19 research outputs found

    Changes in Volatile Profiles and Activity of Hydroperoxide Lyase and Alcohol Dehydrogenase During the Development of Cabernet Sauvignon Grapes (Vitis vinifera L.)

    Get PDF
    In this study we focused on the development of Cabernet Sauvignon grapes and investigated changes in theactivity of alcohol dehydrogenase (ADH) and hydroperoxide lyase (HPL) in different tissues. We sampledgrape skin at four, six, seven, eight, nine, 10, 12, 14 and 16 weeks after anthesis; developing flowers whenblooming at 0%, 5%, 50%, and 90%; and leaves at two and four weeks before anthesis and at two, four,six, eight, nine, and 10 weeks after anthesis. We also examined the type and fluctuation of volatile contents.ADH activity increased with the development of flowers and grape skins, which led to the increasing oftypes and concentration of alcohols. Low levels of 9-HPL led to low concentrations of C9 compounds.According to this paper, C6 compounds became abundant with the development of grape berries, while theactivity of 13-HPL kept at a low level in the flowers and grape skins. There might have been a high level of13-HPL activity from the end of flowering until fruit setting that we did not detect. Furthermore, similarC6 and C5 compounds were detected across all tissues, including hexanal, (E)-2-hexenal, (Z)-3-hexenal,(Z)-2-penten-1-ol, (Z)-3-hexen-1-ol, 1-hexanol and 3-hexen-1-ol. Generally speaking, the concentrations ofC6 and C5 compounds could be used as the criterion of maturation of the three grape tissues

    Identification of Renal Long Non-coding RNA RP11-2B6.2 as a Positive Regulator of Type I Interferon Signaling Pathway in Lupus Nephritis

    Get PDF
    Objective: Lupus nephritis (LN) is one of the most serious complications of systemic lupus erythematosus (SLE). Type I interferon (IFN-I) is associated with the pathogenesis of LN. Long non-coding RNAs (lncRNAs) have been implicated in the pathogenesis of SLE, however, the roles of lncRNAs in LN are still poorly understood. Here, we identified and investigated the function of LN-associated lncRNA RP11-2B6.2 in regulating IFN-I signaling pathway.Methods: RNA sequencing was used to analyze the expression of lncRNAs in kidney biopsies from LN patients and controls. Antisense oligonucleotides and CRISPRi system or overexpression plasmids and CRISPRa system were used to perform loss or gain of function experiments. In situ hybridization, imaging flow cytometry, dual-luciferase reporter assay, and ATAC sequencing were used to study the functions of lncRNA RP11-2B6.2. RT-qPCR, ELISA, and western blotting were done to detect RNA and protein levels of specific genes.Results: Elevated lncRNA RP11-2B6.2 was observed in kidney biopsies from LN patients and positively correlated with disease activity and IFN scores. Knockdown of lncRNA RP11-2B6.2 in renal cells inhibited the expression of IFN stimulated genes (ISGs), while overexpression of lncRNA RP11-2B6.2 enhanced ISG expression. Knockdown of LncRNA RP11-2B6.2 inhibited the phosphorylation of JAK1, TYK2, and STAT1 in IFN-I pathway, while promoted the chromatin accessibility and the transcription of SOCS1.Conclusion: The expression of lncRNAs is abnormal in the kidney of LN. LncRNA RP11-2B6.2 is a novel positive regulator of IFN-I pathway through epigenetic inhibition of SOCS1, which provides a new therapeutic target to alleviate over-activated IFN-I signaling in LN

    Docosahexaenoic acid supplementation in gestational diabetes mellitus and neonatal metabolic health biomarkers

    Get PDF
    Background and objectiveGestational diabetes mellitus (GDM) “programs” an elevated risk of metabolic dysfunctional disorders in the offspring, and has been associated with elevated leptin and decreased adiponectin levels in cord blood. We sought to assess whether docosahexaenoic acid (DHA) supplementation in GDM affects neonatal metabolic health biomarkers especially leptin and adiponectin.MethodsIn a randomized controlled trial, singleton pregnant women with de novo diagnosis of GDM at 24–28  weeks of gestation were randomized to dietary supplementation of 500 mg DHA per day (intervention, n = 30) until delivery or standard care (control, n = 38). The primary outcomes were cord blood leptin and total adiponectin concentrations. Secondary outcomes included high-molecular-weight (HMW) adiponectin and insulin-like growth factor-1 (IGF-1) concentrations in cord blood, maternal glycemic control post-intervention and birth weight (z score). In parallel, 38 euglycemic pregnant women were recruited for comparisons of cord blood biomarkers.ResultsThere were no significant differences in cord serum leptin, total and HMW adiponectin and IGF-1 concentrations between DHA supplementation and control groups (all p > 0.05). Maternal fasting and 2-h postprandial blood glucose levels at 12–16 weeks post-intervention were similar between the two groups. The newborns in the DHA group had higher birth weight z scores (p = 0.02). Cord blood total and HMW adiponectin concentrations were significantly lower in GDM vs. euglycemic pregnancies.ConclusionDocosahexaenoic acid supplementation at 500  mg/day in GDM women did not affect neonatal metabolic biomarkers including leptin, adiponectin and IGF-1. The results are reassuring in light of the absence of influence on neonatal adipokines (leptin and adiponectin), and potential benefits to fetal growth and development.Clinical Trial Registration: Clinicaltrials.gov, NCT03569501

    Data_Sheet_1_Docosahexaenoic acid supplementation in gestational diabetes mellitus and neonatal metabolic health biomarkers.docx

    No full text
    Background and objectiveGestational diabetes mellitus (GDM) “programs” an elevated risk of metabolic dysfunctional disorders in the offspring, and has been associated with elevated leptin and decreased adiponectin levels in cord blood. We sought to assess whether docosahexaenoic acid (DHA) supplementation in GDM affects neonatal metabolic health biomarkers especially leptin and adiponectin.MethodsIn a randomized controlled trial, singleton pregnant women with de novo diagnosis of GDM at 24–28  weeks of gestation were randomized to dietary supplementation of 500 mg DHA per day (intervention, n = 30) until delivery or standard care (control, n = 38). The primary outcomes were cord blood leptin and total adiponectin concentrations. Secondary outcomes included high-molecular-weight (HMW) adiponectin and insulin-like growth factor-1 (IGF-1) concentrations in cord blood, maternal glycemic control post-intervention and birth weight (z score). In parallel, 38 euglycemic pregnant women were recruited for comparisons of cord blood biomarkers.ResultsThere were no significant differences in cord serum leptin, total and HMW adiponectin and IGF-1 concentrations between DHA supplementation and control groups (all p > 0.05). Maternal fasting and 2-h postprandial blood glucose levels at 12–16 weeks post-intervention were similar between the two groups. The newborns in the DHA group had higher birth weight z scores (p = 0.02). Cord blood total and HMW adiponectin concentrations were significantly lower in GDM vs. euglycemic pregnancies.ConclusionDocosahexaenoic acid supplementation at 500  mg/day in GDM women did not affect neonatal metabolic biomarkers including leptin, adiponectin and IGF-1. The results are reassuring in light of the absence of influence on neonatal adipokines (leptin and adiponectin), and potential benefits to fetal growth and development.Clinical Trial Registration: Clinicaltrials.gov, NCT03569501.</p

    Hadron physics programs at HIRFL-CSRm: Plan and status

    No full text
    An internal target experiment at HIRFL-CSRm is planned for hadron physics, which focuses on hadron spectroscopy, polarized strangeness production and medium effect. A conceptual design of Hadron Physics Lanzhou Spectrometer (HPLUS) is discussed. Related computing framework involves event generation, simulation, reconstruction and final analysis. The R&D works on internal target facilities and sub-detectors are presented briefly.Supported by National Natural Science Foundation of China (10635080, 10675148) and Knowledge Innovation Project of Chinese Academy of Sciences (KJCX2-SW-No18, CXTD-J2005-1
    corecore