7,170 research outputs found
Nano-electromechanical switchable photonic metamaterials
We introduce mechanically reconfigurable electrostatically-driven photonic metamaterials (RPMs) as a generic platform for large-range tuning and switching of photonic metamaterial properties. Here we illustrate this concept with a high-contrast metamaterial electro-optic switch exhibiting relative reflection changes of up to 72% in the optical part of the spectrum
Spin correlated interferometry for polarized and unpolarized photons on a beam splitter
Spin interferometry of the 4th order for independent polarized as well as
unpolarized photons arriving simultaneously at a beam splitter and exhibiting
spin correlation while leaving it, is formulated and discussed in the quantum
approach. Beam splitter is recognized as a source of genuine singlet photon
states. Also, typical nonclassical beating between photons taking part in the
interference of the 4th order is given a polarization dependent explanation.Comment: RevTeX, 19 pages, 1 ps figure, author web page at
http://m3k.grad.hr/pavici
Mode-Locked Two-Photon States
The concept of mode locking in laser is applied to a two-photon state with
frequency entanglement. Cavity enhanced parametric down-conversion is found to
produce exactly such a state. The mode-locked two-photon state exhibits a
comb-like correlation function. An unbalanced Hong-Ou-Mandel type
interferometer is used to measure the correlation function. A revival of the
typical interference dip is observed. We will discuss schemes for engineering
of quantum states in time domain.Comment: 4 pages, 5 figure
Unconditional Bell-type state generation for spatially separate trapped ions
We propose a scheme for generation of maximally entangled states involving
internal electronic degrees of freedom of two distant trapped ions, each of
them located in a cavity. This is achieved by using a single flying atom to
distribute entanglement. For certain specific interaction times, the proposed
scheme leads to the non-probabilistic generation of a perfect Bell-type state.
At the end of the protocol, the flying atom completely disentangles from the
rest of the system, leaving both ions in a Bell-type state. Moreover, the
scheme is insensitive to the cavity field state and cavity losses. We also
address the situation in which dephasing and dissipation must be taken into
account for the flying atom on its way from one cavity to the other, and
discuss the applicability of the resulting noisy channel for performing quantum
teleportation.Comment: 5 pages, 1 figure, detailed comments on the practical implementation
of the scheme is added to replaced version, minor typos fixed, added
references with comment
Demonstration of Controllable Temporal Distinguishability in a Three-Photon State
Multi-photon interference is at the heart of the recently proposed linear
optical quantum computing scheme and plays an essential role in many protocols
in quantum information. Indistinguishability is what leads to the effect of
quantum interference. Optical interferometers such as Michaelson interferometer
provide a measure for second-order coherence at one-photon level and
Hong-Ou-Mandel interferometer was widely employed to describe two-photon
entanglement and indistinguishability. However, there is not an effective way
for a system of more than two photons. Recently, a new interferometric scheme
was proposed to quantify the degree of multi-photon distinguishability. Here we
report an experiment to implement the scheme for three-photon case. We are able
to generate three photons with different degrees of temporal distinguishability
and demonstrate how to characterize them by the visibility of three-photon
interference. This method of quantitative description of multi-photon
indistinguishability will have practical implications in the implementation of
quantum information protocols
No-cloning theorem and teleportation criteria for quantum continuous variables
We discuss the criteria presently used for evaluating the efficiency of
quantum teleportation schemes for continuous variables. Using an argument based
upon the difference between 1-to-2 quantum cloning (quantum duplication) and
1-to-infinity cloning (classical measurement), we show that a fidelity value
larger than 2/3 is required for successful quantum teleportation of coherent
states. This value has not been reached experimentally so far.Comment: 4 pages, 1 figure, submitted to Phys. Rev.
Quantum Communication with Correlated Nonclassical States
Nonclassical correlations between the quadrature-phase amplitudes of two
spatially separated optical beams are exploited to realize a two-channel
quantum communication experiment with a high degree of immunity to
interception. For this scheme, either channel alone can have an arbitrarily
small signal-to-noise ratio (SNR) for transmission of a coherent ``message''.
However, when the transmitted beams are combined properly upon authorized
detection, the encoded message can in principle be recovered with the original
SNR of the source. An experimental demonstration has achieved a 3.2 dB
improvement in SNR over that possible with correlated classical sources.
Extensions of the protocol to improve its security against eavesdropping are
discussed.Comment: 8 pages and 4 figures (Figure 1; Figures 2a, 2b; Figure 2
- …