1,232 research outputs found

    Testing and numerical modelling of S960 ultra-high strength steel angle and channel section stub columns

    Get PDF
    A comprehensive experimental and numerical study of the cross-sectional compressive behaviour and resistances of press-braked S960 ultra-high strength steel (UHSS) angle and channel section stub columns is reported in this paper. The experimental study was carried out on four equal-leg angle sections and eight plain channel sections, and comprised material testing, initial local geometric imperfection measurements and 18 stub column tests. The experimental setups, procedures and key observations were fully presented. The experimental study was then supplemented by a finite element (FE) simulation programme, in which FE models were firstly developed to replicate the test structural responses and subsequently used to generate further numerical data over a wide variety of cross-section sizes. It is worth noting that the current international standards established in Europe, America and Australia/New Zealand only cover the design of structural members with material grades up to S700, and thus the examined S960 UHSS angle and channel section stub columns are out of the scope of the existing design standards. In this study, the experimentally and numerically acquired data was adopted to assess the applicability of the codified provisions and formulations to the design of S960 UHSS angle and channel section stub columns. The assessment results generally indicated that the current European code leads to overall consistent and accurate predictions of cross-section compression resistances, but with many overestimated predicted resistances for S960 UHSS channel section stub columns, while the American and Australian/New Zealand standards yield unduly scattered design cross-section compression resistances, with unsafe and overly conservative predicted resistances respectively for S960 UHSS channel section stub columns and slender angle section stub columns. Revised codified design rules were also proposed, and shown to yield safe, accurate and consistent design cross-section compression resistances for S960 UHSS angle and channel section stub columns

    Flexural behaviour and strengths of press-braked S960 ultra-high strength steel channel section beams

    Get PDF
    A thorough experimental and numerical study of the flexural behaviour and strengths of press-braked S960 ultra-high strength steel (UHSS) channel section beams bent about the minor principal axes is reported in this paper. The experimental study was conducted on eight different UHSS plain channel sections, and included measurements on the material flat and corner properties and initial local geometric imperfections of the beam specimens as well as 20 four-point bending tests performed about the minor principal axes in both the ‘u’ and ‘n’ orientations. A complementary numerical investigation was then conducted, where finite element (FE) models were firstly developed and validated against the experimental results, followed by parametric studies carried out to acquire further numerical data over a broader range of cross-section dimensions. It is worth noting that the existing design codes for steel structures, as established in Europe, America and Australia/New Zealand, are only applicable to those with material grades up to S690 (or S700 for Eurocode) and cannot be directly used for S960 UHSS structural members. In the present study, the applicability of the codified design provisions and formulations for flexural members to the examined S960 UHSS channel section beams was evaluated, based on the ultimate moments derived from structural testing and numerical modelling. The quantitative evaluation results generally revealed that the current European code provides overall consistent and precise flexural strength predictions for Class 1 and Class 2 S960 UHSS channel sections in minor-axis bending, but leads to a high level of inaccuracy (scatter and conservatism) for the design of their Class 3 and Class 4 counterparts, whilst the American specification and Australian/New Zealand standard result in scattered and excessively underestimated design flexural strengths, except for the cases of slender S960 UHSS channel section beams in ‘u’-orientation bending

    Behaviour of S960 Ultra‐high Strength Steel Press‐braked Channel Sections

    Get PDF
    This paper reports a comprehensive experimental and numerical study of the cross‐sectional behaviour and resistances of press‐braked S960 ultra‐high strength steel (UHSS) channel section structural members. The experimental study was conducted on eight different ultra‐high strength steel plain channel sections, and comprised material testing, initial local geometric imperfection measurements, as well as a total of 10 stub column tests and 20 four‐point bending tests performed about the minor principal axes in both the ‘u’ and ‘n’ orientations. The experimental study was then supplemented by a finite element (FE) simulation programme, in which FE models were firstly developed to replicate the test structural responses and subsequently used to generate further numerical data over a wide variety of cross‐section sizes. On the basis of the experimental and numerical results, the assessment of the applicability of the codified provisions and formulations, established in the European code, to the design of S960 UHSS channel section stub columns and beams was conducted

    Anti-Inflammatory Effects of Inonotus obliquus in Colitis Induced by Dextran Sodium Sulfate

    Get PDF
    A total of 28 male BALB/c mice (average weight 20.7 ± 1.6 g) were divided into 4 treatment groups and fed a commercial diet (A), a commercial diet + induced colitis by dextran sodium sulfate (DSS) (B), Inonotus obliquus (IO) administration (C), and IO administration + induced colitis by DSS (D). IO treatment (C, D) decreased the expression of tumor necrosis factor (TNF)-α and signal transducers and activators of transcription (STAT)1 compared to those of the colitis induced group (B). The expressions of IL-4 and STAT6 were decreased in group D compared to the colitis induced group (B). The serum immunoglobulin (Ig)E level decreased in IO treatment groups (C, D) compared to no IO treatment groups (A and B) although there was no significant difference between the IO treatment groups. Extract from IO itself had a weak cytotoxic effect on murine macrophage cell line (RAW264.7 cells). Extract from IO inhibited lipopolysaccharide- (LPS-) induced, TNF-α, STAT1, pSTAT1, STAT6, and pSTAT6 production in RAW264.7 cells

    Gene trap mutation of murine Outer dense fiber protein-2 gene can result in sperm tail abnormalities in mice with high percentage chimaerism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Outer dense fiber protein 2, Odf2, is a major component of the outer dense fibers, ODF, in the flagellum of spermatozoa. ODF are associated with microtubule doublets that form the axoneme. We recently demonstrated that tyrosine phosphorylation of Odf2 is important for sperm motility. In the course of a study of Odf2 using Odf2 mouse knockout lines we observed that males of a high percentage chimaerism, made using XL169 embryonic stem cells, were infertile, whereas mice of low-medium percentage chimaerism were fertile.</p> <p>Results</p> <p>XL169 ES cells have a ÎČ-geo gene trap cassette inserted in the Odf2 gene. To determine possible underlying mechanisms resulting in infertility we analyzed epididymal sperm and observed that >50% displayed bent tails. We next performed ultrastructural analyses on testis of high percentage XL169 chimaeric mice. This analysis showed that high percentage XL169 chimaeric mice produce elongating spermatids that miss one or more entire outer dense fibers in their midpiece and principal piece. In addition, we observed elongating spermatids that show thinning of outer dense fibers. No other obvious abnormalities or defects are present in elongating spermatids. Spermatozoa from the caput and cauda epididymis of XL169 mice of high percentage chimaerism show additional tail defects, including absence of one or more axonemal microtubule doublets and bent tails. Sperm with bent tails display abnormal motility.</p> <p>Conclusions</p> <p>Our results document the possible impact of loss of one Odf2 allele on sperm tail structure and function, resulting in a novel sperm tail phenotype.</p

    KLC3 is involved in sperm tail midpiece formation and sperm function

    Get PDF
    AbstractKinesin light chain 3 (KLC3) is the only known kinesin light chain expressed in post-meiotic male germ cells. We have reported that in rat spermatids KLC3 associates with outer dense fibers and mitochondrial sheath. KLC3 is able to bind to mitochondria in vitro and in vivo employing the conserved tetratrico-peptide repeat kinesin light chain motif. The temporal expression and association of KLC3 with mitochondria coincides with the stage in spermatogenesis when mitochondria move from the spermatid cell periphery to the developing midpiece suggesting a role in midpiece formation. In fibroblasts, expression of KLC3 results in formation of large KLC3 aggregates close to the nucleus that contain mitochondria. However, the molecular basis of the aggregation of mitochondria by KLC3 and its role in sperm tail midpiece formation are not clear.Here we show that KLC3 expression from an inducible system causes mitochondrial aggregation within 6h in a microtubule dependent manner. We identified the mitochondrial outer membrane porin protein VDAC2 as a KLC3 binding partner. To analyze a role for KLC3 in spermatids we developed a transgenic mouse model in which a KLC3ΔHR mutant protein is specifically expressed in spermatids: this KLC3 mutant protein binds mitochondria and causes aggregate formation, but cannot bind outer dense fibers. Male transgenic mice display significantly reduced reproductive efficiency siring small sized litters. We observed defects in the mitochondrial sheath structure in a number of transgenic spermatids. Transgenic males have a significantly reduced sperm count and produce spermatozoa that exhibit abnormal motility parameters. Our results indicate that KLC3 plays a role during spermiogenesis in the development of the midpiece and in the normal function of spermatozoa

    Scalable scheme for entangling multiple ququarts using linear optical elements

    Full text link
    We report a scalable linear optical scheme for generating entangled states of multiple ququarts in which the individual single-ququart state is prepared with the biphoton polarization state of frequency-nondegenerate spontaneous parametric down-conversion. The output state is calculated with the full consideration of the higher order effect (double-pair events) of spontaneous parametric down-conversion. Scalability to multiple-ququart entanglement is demonstrated with examples: linear optical entanglement of three and four individual biphoton ququarts

    A semiconductor source of triggered entangled photon pairs?

    Full text link
    The realisation of a triggered entangled photon source will be of great importance in quantum information, including for quantum key distribution and quantum computation. We show here that: 1) the source reported in ``A semiconductor source of triggered entangled photon pairs''[1. Stevenson et al., Nature 439, 179 (2006)]} is not entangled; 2) the entanglement indicators used in Ref. 1 are inappropriate, relying on assumptions invalidated by their own data; and 3) even after simulating subtraction of the significant quantity of background noise, their source has insignificant entanglement.Comment: 5 pages in pre-print format, 1 tabl

    Influence of Y-doped induced defects on the optical and magnetic properties of ZnO nanorod arrays prepared by low-temperature hydrothermal process

    Get PDF
    One-dimensional pure zinc oxide (ZnO) and Y-doped ZnO nanorod arrays have been successfully fabricated on the silicon substrate for comparison by a simple hydrothermal process at the low temperature of 90°C. The Y-doped nanorods exhibit the same c-axis-oriented wurtzite hexagonal structure as pure ZnO nanorods. Based on the results of photoluminescence, an enhancement of defect-induced green-yellow visible emission is observed for the Y-doped ZnO nanorods. The decrease of E(2)(H) mode intensity and increase of E(1)(LO) mode intensity examined by the Raman spectrum also indicate the increase of defects for the Y-doped ZnO nanorods. As compared to pure ZnO nanorods, Y-doped ZnO nanorods show a remarked increase of saturation magnetization. The combination of visible photoluminescence and ferromagnetism measurement results indicates the increase of oxygen defects due to the Y doping which plays a crucial role in the optical and magnetic performances of the ZnO nanorods
    • 

    corecore