4,010 research outputs found

    Reconfigurable nanomembrane metadevices

    No full text
    Dynamic control over metamaterial optical properties enables active metadevices. Here we demonstrate optically, magnetically and electrically actuated metadevices providing functionalities from giant nonlinear and magneto-electro-optical effects to on-demand gratings, phase gradient surfaces, beam steering and focusing of light

    Adaptive online deployment for resource constrained mobile smart clients

    Get PDF
    Nowadays mobile devices are more and more used as a platform for applications. Contrary to prior generation handheld devices configured with a predefined set of applications, today leading edge devices provide a platform for flexible and customized application deployment. However, these applications have to deal with the limitations (e.g. CPU speed, memory) of these mobile devices and thus cannot handle complex tasks. In order to cope with the handheld limitations and the ever changing device context (e.g. network connections, remaining battery time, etc.) we present a middleware solution that dynamically offloads parts of the software to the most appropriate server. Without a priori knowledge of the application, the optimal deployment is calculated, that lowers the cpu usage at the mobile client, whilst keeping the used bandwidth minimal. The information needed to calculate this optimum is gathered on the fly from runtime information. Experimental results show that the proposed solution enables effective execution of complex applications in a constrained environment. Moreover, we demonstrate that the overhead from the middleware components is below 2%

    Reliability of the beamsplitter based Bell-state measurement

    Full text link
    A linear 50/50 beamsplitter, together with a coincidence measurement, has been widely used in quantum optical experiments, such as teleportation, dense coding, etc., for interferometrically distinguishing, measuring, or projecting onto one of the four two-photon polarization Bell-states ψ()>|\psi^{(-)}>. In this paper, we demonstrate that the coincidence measurement at the output of a beamsplitter cannot be used as an absolute identifier of the input state ψ()>|\psi^{(-)}> nor as an indication that the input photons have projected to the ψ()>|\psi^{(-)}> state.Comment: 4 pages, two-colum

    Quantum interference with photon pairs created in spatially separated sources

    Full text link
    We report on a quantum interference experiment to probe the coherence between two photons coming from non degenerate photon pairs at telecom wavelength created in spatially separated sources. The two photons are mixed on a beam splitter and we observe a reduction of up to 84% in the coincidence count rate when the photons are made indistinguishable. This experiment constitutes an important step towards the realization of quantum teleportation and entanglement swapping with independent sources.Comment: 5 pages, 2 figures, changes according to referee's comments, discussions partly rewritte

    Do topology and ferromagnetism cooperate at the EuS/Bi2_2Se3_3 interface?

    Full text link
    We probe the local magnetic properties of interfaces between the insulating ferromagnet EuS and the topological insulator Bi2_2Se3_3 using low energy muon spin rotation (LE-μ\muSR). We compare these to the interface between EuS and the topologically trivial metal, titanium. Below the magnetic transition of EuS, we detect strong local magnetic fields which extend several nm into the adjacent layer and cause a complete depolarization of the muons. However, in both Bi2_2Se3_3 and titanium we measure similar local magnetic fields, implying that their origin is mostly independent of the topological properties of the interface electronic states. In addition, we use resonant soft X-ray angle resolved photoemission spectroscopy (SX-ARPES) to probe the electronic band structure at the interface between EuS and Bi2_2Se3_3. By tuning the photon energy to the Eu anti-resonance at the Eu M5M_5 pre-edge we are able to detect the Bi2_2Se3_3 conduction band, through a protective Al2_2O3_3 capping layer and the EuS layer. Moreover, we observe a signature of an interface-induced modification of the buried Bi2_2Se3_3 wave functions and/or the presence of interface states

    Finite resolution measurement of the non-classical polarization statistics of entangled photon pairs

    Get PDF
    By limiting the resolution of quantum measurements, the measurement induced changes of the quantum state can be reduced, permitting subsequent measurements of variables that do not commute with the initially measured property. It is then possible to experimentally determine correlations between non-commuting variables. The application of this method to the polarization statistics of entangled photon pairs reveals that negative conditional probabilities between non-orthogonal polarization components are responsible for the violation of Bell's inequalities. Such negative probabilities can also be observed in finite resolution measurements of the polarization of a single photon. The violation of Bell's inequalities therefore originates from local properties of the quantum statistics of single photon polarization.Comment: 15 pages, 5 figures and 1 table, new figure to illustrate results, improved explanation of statistical analysi

    On EPR paradox, Bell's inequalities and experiments which prove nothing

    Full text link
    This article shows that the there is no paradox. Violation of Bell's inequalities should not be identified with a proof of non locality in quantum mechanics. A number of past experiments is reviewed, and it is concluded that the experimental results should be re-evaluated. The results of the experiments with atomic cascade are shown not to contradict the local realism. The article points out flaws in the experiments with down-converted photons. The experiments with neutron interferometer on measuring the "contextuality" and Bell-like inequalities are analyzed, and it is shown that the experimental results can be explained without such notions. Alternative experiment is proposed to prove the validity of local realism.Comment: 27 pages, 8 figures. I edited a little the text and abstract I corrected equations (49) and (50

    Optimal Quantum Cloning via Stimulated Emission

    Get PDF
    We show that optimal universal quantum cloning can be realized via stimulated emission. Universality of the cloning procedure is achieved by choosing systems that have appropriate symmetries. We first discuss a scheme based on stimulated emission in certain three-level-systems, e.g. atoms in a cavity. Then we present a way of realizing optimal universal cloning based on stimulated parametric down-conversion. This scheme also implements the optimal universal NOT operation.Comment: 4 pages, 3 figure

    Narrowband frequency tunable light source of continuous quadrature entanglement

    Full text link
    We report the observation of non-classical quantum correlations of continuous light variables from a novel type of source. It is a frequency non-degenerate optical parametric oscillator below threshold, where signal and idler fields are separated by 740MHz corresponding to two free spectrum ranges of the parametric oscillator cavity. The degree of entanglement observed, - 3.8 dB, is the highest to-date for a narrowband tunable source suitable for atomic quantum memory and other applications in atomic physics. Finally we use the latter to visualize the Einstein-Podolsky-Rosen paradox.Comment: 11 pages, 9 figures, LaTe
    corecore