29 research outputs found

    Sprayable Aerogel Bead Compositions With High Shear Flow Resistance and High Thermal Insulation Value

    Get PDF
    A sprayable aerogel insulation has been developed that has good mechanical integrity and lower thermal conductivity than incumbent polyurethane spray-on foam insulation, at similar or lower areal densities, to prevent insulation cracking and debonding in an effort to eliminate the generation of inflight debris. This new, lightweight aerogel under bead form can be used as insulation in various thermal management systems that require low mass and volume, such as cryogenic storage tanks, pipelines, space platforms, and launch vehicles

    Nearly Seamless Vacuum-Insulated Boxes

    Get PDF
    A design concept, and a fabrication process that would implement the design concept, have been proposed for nearly seamless vacuum-insulated boxes that could be the main structural components of a variety of controlled-temperature containers, including common household refrigerators and insulating containers for shipping foods. In a typical case, a vacuum-insulated box would be shaped like a rectangular parallelepiped conventional refrigerator box having five fully closed sides and a hinged door on the sixth side. Although it is possible to construct the five-closed-side portion of the box as an assembly of five unitary vacuum-insulated panels, it is not desirable to do so because the relatively high thermal conductances of the seams between the panels would contribute significant amounts of heat leakage, relative to the leakage through the panels themselves. In contrast, the proposal would make it possible to reduce heat leakage by constructing the five-closed-side portion of the box plus the stationary portion (if any) of the sixth side as a single, seamless unit; the only remaining seam would be the edge seal around the door. The basic cross-sectional configuration of each side of a vacuum-insulated box according to the proposal would be that of a conventional vacuum-insulated panel: a low-density, porous core material filling a partially evacuated space between face sheets. However, neither the face sheets nor the core would be conventional. The face sheets would be opposite sides of a vacuum bag. The core material would be a flexible polymer-modified silica aerogel of the type described in Silica/Polymer and Silica/Polymer/Fiber Composite Aero - gels (MSC-23736) in this issue of NASA Tech Briefs. As noted in that article, the stiffness of this core material against compression is greater than that of prior aerogels. This is an important advantage because it translates to greater retention of thickness and, hence, of insulation performance when pressure is applied across the thickness, in particular, when the space between the face sheets is evacuated, causing the core material to be squeezed between the face sheets by atmospheric pressure. Fabrication of a typical vacuum-insulated box according to the proposal would begin with fabrication of a cross-shaped polymer-modified aerogel blanket. The dimensions of the cross would be chosen so that (1) the central rectangular portion of the cross would form the core for the back of the box and (2) the arms of the cross could be folded 90 from the back plane to form the cores of the adjacent four sides of the box. Optionally, the blanket could include tabs for joining the folded sides of the blanket along mating edges and tabs that could serve as hinges for the door. Vacuum bags in the form of similar five-sided boxes would be made of a suitable polymeric film, one bag to fit the outer core surface, the other to fit the inner core surface. By use of commercially available film-sealing equipment, these box-shaped bags would be seamed together to form a single vacuum bag encasing the box-shaped core. Also, a one-way valve would be sealed to the bag. Through this valve, the interior of the bag would be evacuated to a pressure between 1 and 10 torr (approximately between 0.13 and 1.3 kPa). The polymer-modified aerogel core material is known to perform well as a thermal insulator in such a partial vacuum

    Silica/Polymer and Silica/Polymer/Fiber Composite Aerogels

    Get PDF
    Aerogels that consist, variously, of neat silica/polymer alloys and silica/polymer alloy matrices reinforced with fibers have been developed as materials for flexible thermal-insulation blankets. In comparison with prior aerogel blankets, these aerogel blankets are more durable and less dusty. These blankets are also better able to resist and recover from compression . an important advantage in that maintenance of thickness is essential to maintenance of high thermal-insulation performance. These blankets are especially suitable as core materials for vacuum- insulated panels and vacuum-insulated boxes of advanced, nearly seamless design. (Inasmuch as heat leakage at seams is much greater than heat leakage elsewhere through such structures, advanced designs for high insulation performance should provide for minimization of the sizes and numbers of seams.) A silica/polymer aerogel of the present type could be characterized, somewhat more precisely, as consisting of multiply bonded, linear polymer reinforcements within a silica aerogel matrix. Thus far, several different polymethacrylates (PMAs) have been incorporated into aerogel networks to increase resistance to crushing and to improve other mechanical properties while minimally affecting thermal conductivity and density. The polymethacrylate phases are strongly linked into the silica aerogel networks in these materials. Unlike in other organic/inorganic blended aerogels, the inorganic and organic phases are chemically bonded to each other, by both covalent and hydrogen bonds. In the process for making a silica/polymer alloy aerogel, the covalent bonds are introduced by prepolymerization of the methacrylate monomer with trimethoxysilylpropylmethacrylate, which serves as a phase cross-linker in that it contains both organic and inorganic monomer functional groups and hence acts as a connector between the organic and inorganic phases. Hydrogen bonds are formed between the silanol groups of the inorganic phase and the carboxyl groups of the organic phase. The polymerization process has been adapted to create interpenetrating PMA and silica-gel networks from monomers and prevent any phase separations that could otherwise be caused by an overgrowth of either phase. Typically, the resulting PMA/silica aerogel, without or with fiber reinforcement, has a density and a thermal conductivity similar to those of pure silica aerogels. However, the PMA enhances mechanical properties. Specifically, flexural strength at rupture is increased to 102 psi (=0.7 MPa), about 50 times the flexural strength of typical pure silica aerogels. Resistance to compression is also increased: Applied pressure of 17.5 psi (=0.12 MPa) was found to reduce the thicknesses of several composite PMA/silica aerogels by only about 10 percent

    Le Hit parade / Henri Salvador

    No full text
    Titre uniforme : [Bon voyage]Titre uniforme : [Buenas noches mi amor]Titre uniforme : [Buenas noches mi amor]Titre uniforme : [Le gondolier]Comprend : Gondolier / J. Broussolle ; Pete de Angelis - Bon voyage / J. Larue ; D. Small - Colonel Bogey / R. Chabrier ; K. J. Alford - BUENAS NOCHES MI AMOR / M. Fontenoy ; H. GiraudBnF-Partenariats, Collection sonore - BelieveContient une table des matière

    Surprise-partie à Hawaï / Danny STEWART et ses Hawaïens

    No full text
    Comprend : DANCE THE HULA IN THE MOONLIGHT / TODARO - PILTZ - MY LEHUA / STEWART - MY HULA STAR / STEWART - GOOD NIGHT KUU IPO / GRAHAM- KAEOLANI - AN ISLAND CALLS TO YOU / PITMAN - HAWAIIAN MERMAID / STEWART - HAWAIIAN HULA GIRL / KOKI - ON THE ISLE OF KAPU / STEWART - THE WAIKIKI HULA / DANT - LOVELY ISLAND AT HAWAII / BURKE - FRANGIPANI BLOSSOM / LIVINGSTON - EVANS - KEEP YOUR EYES ON THE HANDS / TODARO - JOHNSTONBnF-Partenariats, Collection sonore - BelieveContient une table des matière
    corecore