375 research outputs found

    Quality Control System Response to Stochastic Growth of Amyloid Fibrils

    Get PDF
    We introduce a stochastic model describing aggregation of misfolded proteins and degradation by the protein quality control system in a single cell. In analogy with existing literature, aggregates can grow, nucleate and fragment stochastically. We assume that the quality control system acts as an enzyme that can degrade aggregates at different stages of the growth process, with an efficiency that decreases with the size of the aggregate. We show how this stochastic dynamics, depending on the parameter choice, leads to two qualitatively different behaviors: a homeostatic state, where the quality control system is stable and aggregates of large sizes are not formed, and an oscillatory state, where the quality control system periodically breaks down, allowing for the formation of large aggregates. We discuss how these periodic breakdowns may constitute a mechanism for the sporadic development of neurodegenerative diseases.Comment: 14 pages, 4 figures, submitte

    Interactions between misfolded protein oligomers and membranes: A central topic in neurodegenerative diseases?

    Get PDF
    AbstractThe deposition of amyloid material has been associated with many different diseases. Although these diseases are very diverse the amyloid material share many common features such as cross-β-sheet structure of the backbone of the proteins deposited. Another common feature of the aggregation process for a wide variety of proteins is the presence of prefibrillar oligomers. These oligomers are linked to the cytotoxicity occurring during the aggregation of proteins. These prefibrillar oligomers interact extensively with lipid membranes and in some cases leads to destabilization of lipid membranes. This interaction is however highly dependent on the nature of both the oligomer and the lipids. Anionic lipids are often required for interaction with the lipid membrane while increased exposure of hydrophobic patches from highly dynamic protein oligomers are structural determinants of cytotoxicity of the oligomers. To explore the oligomer lipid interaction in detail the interaction between oligomers of α-synuclein and the 4th fasciclin-1 domain of TGFBIp with lipid membranes will be examined here. For both proteins the dynamic species are the ones causing membrane destabilization and the membrane interaction is primarily seen when the lipid membranes contain anionic lipids. Hence the dynamic nature of oligomers with exposed hydrophobic patches alongside the presence of anionic lipids could be essential for the cytotoxicity observed for prefibrillar oligomers in general. This article is part of a Special Issue entitled: Lipid–protein interactions

    Weak and saturable protein-surfactant interactions in the denaturation of apo-α-lactalbumin by acidic and lactonic sophorolipid

    Get PDF
    Biosurfactants are of growing interest as sustainable alternatives to fossil-fuel-derived chemical surfactants, particularly for the detergent industry. To realize this potential, it is necessary to understand how they affect proteins which they may encounter in their applications. However, knowledge of such interactions is limited. Here, we present a study of the interactions between the model protein apo-alpha-lactalbumin (apo-aLA) and the biosurfactant sophorolipid (SL) produced by the yeast Starmerella bombicola. SL occurs both as an acidic and a lactonic form; the lactonic form (lactSL) is sparingly soluble and has a lower critical micelle concentration (cmc) than the acidic form [non-acetylated acidic sophorolipid (acidSL)]. We show that acidSL affects apo-aLA in a similar way to the related glycolipid biosurfactant rhamnolipid (RL), with the important difference that RL is also active below the cmc in contrast to acidSL. Using isothermal titration calorimetry data, we show that acidSL has weak and saturable interactions with apo-aLA at low concentrations; due to the relatively low cmc of acidSL (which means that the monomer concentration is limited to ca. 0-1 mM SL), it is only possible to observe interactions with monomeric acidSL at high apo-aLA concentrations. However, the denaturation kinetics of apo-aLA in the presence of acidSL are consistent with a collaboration between monomeric and micellar surfactant species, similar to RL and non-ionic or zwitterionic surfactants. Inclusion of diacetylated lactonic sophorolipid (lactSL) as mixed micelles with acidSL lowers the cmc and this effectively reduces the rate of unfolding, emphasizing that SL like other biosurfactants is a gentle anionic surfactant. Our data highlight the potential of these biosurfactants for future use in the detergent and pharmaceutical industry

    High-quality draft genome sequence of <i>Sphaerisporangium cinnabarinum</i> ATCC 31213

    Get PDF
    ABSTRACT A high-quality draft genome sequence of Sphaerisporangium cinnabarinum ATCC 31213 is presented here. This bacterium produces several important bioactive compounds and may also produce functional amyloids. This is the first sequenced genome from the genus Sphaerisporangium , and it will be essential in determining the nature of the potential amyloid protein. </jats:p

    Fast Mapping of Global Protein Folding States by Multivariate NMR: A GPS for Proteins

    Get PDF
    To obtain insight into the functions of proteins and their specific roles, it is important to establish efficient procedures for exploring the states that encapsulate their conformational space. Global Protein folding State mapping by multivariate NMR (GPS NMR) is a powerful high-throughput method that provides such an overview. GPS NMR exploits the unique ability of NMR to simultaneously record signals from individual hydrogen atoms in complex macromolecular systems and of multivariate analysis to describe spectral variations from these by a few variables for establishment of, and positioning in, protein-folding state maps. The method is fast, sensitive, and robust, and it works without isotope-labelling. The unique capabilities of GPS NMR to identify different folding states and to compare different unfolding processes are demonstrated by mapping of the equilibrium folding space of bovine α-lactalbumin in the presence of the anionic surfactant sodium dodecyl sulfate, SDS, and compare these with other surfactants, acid, denaturants and heat

    Stop-and-go kinetics in amyloid fibrillation

    Get PDF
    Many human diseases are associated with protein aggregation and fibrillation. Using glucagon as a model system for protein fibrillation we show that fibrils grow in an intermittent fashion, with periods of growth followed by long pauses. Remarkably, even if the intrinsic transition rates vary considerably in each experiment, the probability of being in the growing (stopping) state is very close to 1/4 (3/4), suggesting the presence of 4 independent conformations of the fibril tip. We discuss this possibility in terms of existing structural knowledge

    The transcriptional regulator GalR self-assembles to form highly regular tubular structures

    Get PDF
    The Gal repressor regulates transport and metabolism of D-galactose in Escherichia coli and can mediate DNA loop formation by forming a bridge between adjacent or distant sites. GalR forms insoluble aggregates at lower salt concentrations in vitro, which can be solubilized at higher salt concentrations. Here, we investigate the assembly and disassembly of GalR aggregates. We find that a sharp transition from aggregates to soluble species occurs between 200 and 400 mM NaCl, incompatible with a simple salting-in effect. The aggregates are highly ordered rod-like structures, highlighting a remarkable ability for organized self-assembly. Mutant studies reveal that aggregation is dependent on two separate interfaces of GalR. The highly ordered structures dissociate to smaller aggregates in the presence of D-galactose. We propose that these self-assembled structures may constitute galactose-tolerant polymers for chromosome compaction in stationary phase cells, in effect linking self-assembly with regulatory function

    A Possible Connection Between Plant Longevity and the Absence of Protein Fibrillation: Basis for Identifying Aggregation Inhibitors in Plants

    Get PDF
    The ability of proteins to aggregate to form well-organized β-sheet rich amyloid fibrils is increasingly viewed as a general if regrettable property of the polypeptide chain. Aggregation leads to diseases such as amyloidosis and neurodegeneration in humans and various mammalian species but is also found in a functional variety in both animals and microbes. However, there are to our knowledge no reports of amyloid formation in plants. Plants are also the source of a large number of aggregation-inhibiting compounds. We reasoned that the two phenomena could be connected and that one of (many) preconditions for plant longevity is the ability to suppress unwanted protein aggregation. In support of this, we show that while protein extracts from the sugar maple tree Acer saccharum fibrillate readily on their own, this process is efficiently abolished by addition of small molecule extracts from the same plant. Further analysis of 44 plants showed a correlation between plant longevity and ability to inhibit protein aggregation. Extracts from the best performing plant, the sugar maple, were subjected to chromatographic fractionation, leading to the identification of a large number of compounds, many of which were shown to inhibit aggregation in vitro. One cautious interpretation is that it may have been advantageous for plants to maintain an efficient collection of aggregation-inhibiting metabolites as long as they do not impair metabolite function. From a practical perspective, our results indicate that long-lived plants may be particularly appropriate sources of new anti-aggregation compounds with therapeutic potential
    • …
    corecore