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The deposition of amyloidmaterial has been associatedwithmanydifferent diseases. Although these diseases are
very diverse the amyloidmaterial share many common features such as cross-β-sheet structure of the backbone
of the proteins deposited. Another common feature of the aggregation process for awide variety of proteins is the
presence of prefibrillar oligomers. These oligomers are linked to the cytotoxicity occurring during the aggregation
of proteins. These prefibrillar oligomers interact extensively with lipid membranes and in some cases leads to
destabilization of lipid membranes. This interaction is however highly dependent on the nature of both the
oligomer and the lipids. Anionic lipids are often required for interactionwith the lipidmembranewhile increased
exposure of hydrophobic patches from highly dynamic protein oligomers are structural determinants of cytotox-
icity of the oligomers. To explore the oligomer lipid interaction in detail the interaction between oligomers of
α-synuclein and the 4th fasciclin-1 domain of TGFBIp with lipid membranes will be examined here. For both
proteins the dynamic species are the ones causing membrane destabilization and the membrane interaction is
primarily seen when the lipid membranes contain anionic lipids. Hence the dynamic nature of oligomers with
exposed hydrophobic patches alongside the presence of anionic lipids could be essential for the cytotoxicity
observed for prefibrillar oligomers in general. This article is part of a Special Issue entitled: Lipid–protein
interactions.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Today more than 40 different diseases have been linked to the
deposition of proteinaceous amyloid material in various tissues [1].
The deposits are mainly composed of protein fibrils and each disease
usually has one major protein associated with it. Certain compo-
nents are regularly found bound to the protein deposits including
glucosaminoglycans, collagen, chaperones, serum amyloid P com-
ponent, and apolipoprotein E [2,3]. The deposited material can be
intra- or extra-cellular or both [1,4,5]. The diseases can be familial,
sporadic or even transmissible and they can affect a single tissue or
be systemic [6]. Some amyloid-associated diseases, such as type II
diabetes, Alzheimer's disease (AD) and Parkinson's disease (PD), have
great socio-economic consequences due to their extensive prevalence.
Others are rare and only affect few people.

Despite themany differences in this group of diseases, the proteina-
ceous deposits share many common features. The protein fibrils are all
arranged in a so-called cross-β ultra structure composed of hydrogen-
bonded β-strands where the backbone of the individual proteins is
arranged in an extended conformation with the individual protein
strands running perpendicular to the long axis of the fibril, with inter-
strand hydrogen bonds parallel to the fibril axis [7,8]. This arrangement
gives rise to amyloid-specific features like the binding of amyloid spe-
cific dyes, β-sheet secondary structure signature and signals at 4.8 and
10 Å in small angle X-ray diffraction patterns [9,10]. This regular pack-
ing of protein backbone strands into fibrils is very precise, with only
one misplaced strand pr. 30,000 strands [11]. Typically, fibrils are
straight and unbranched and consist of one or more protofilaments
wrapping around each other [12]. The fibrils can be up to several μm
long. Fibrils can however display various different morphologies like
branching or curly appearance. Although many features are shared by
in vivo isolated amyloid material and in vitro produced fibrils, seeding
recombinant proteinwith in vivo isolatedmaterial can give rise tofibrils
with a structure different from that reported for fibrils composed of
purely recombinant material [13]. In addition to pathology-associated
proteins, many others have been found to form β-sheet rich amyloid-
like aggregates, and indeed it has been suggested that proteins have a
generic ability to form fibrillar amyloid-like aggregates with cross-β
sheet structure [14]. The propensity to do so is dependent on the specific
protein's hydrophobicity, electrostatic charge and propensity to form
secondary structural elements [15,16]. Remarkably, the cross-β sheet
fold also acts as a functional entity e.g. for storage of peptide hormones
[17] and in the production of melanin [18].

The amyloid cascade theory proposed early on stated that the fibrils
in the deposited amyloid material were the main culprit causing the
pathology of amyloid diseases [19]. In the case of systemic amyloidosis
this is indeed the case, but for other amyloid diseases the attention has
shifted towards prefibrillar species, particularly prefibrillar oligomers.
Thiswasmainly due to the observation of amyloidmaterial in the brains
of healthy elderly individuals [20] and the observation that the severity
of neurodegenerative diseases did not correlate with the amount of
amyloid material deposited in the brain of AD patients [21–23]. Now
the prevailing view is that fibrils represent a non-toxic molecular
dumping ground for toxic prefibrillar oligomers formed during the
aggregation of the involved protein [24,25]. This correlates with the ob-
servation of elevated levels of prefibrillar oligomers in patients suffering
from neurodegenerative disease [26,27].
2. Prefibrillar oligomers

The aggregation pathway can be very complex, with multiple
species in equilibrium with each other. For some proteins, partial
unfolding is necessary for the aggregation to occur, other proteins
need to monomerize from native multimers in order to oligomerize
into aggregation prone species, and yet others can form fibrils which
maintain some of the native structure of the monomer. Despite the
many differences, prefibrillar oligomers of both disease-associated
and non-disease associated proteins and peptides have been identified
[24,28,29] and they do indeed share common features. The prefibrillar
oligomers are generally thought to containmoreβ-sheet than the corre-
sponding monomer but less than the resulting mature fibrils, display
hydrophobic patches on the surface and are transient in nature, i.e. grad-
ually transform to other more organized aggregates over time, though
isolated oligomers can be remarkably stable [30]. Many of these oligo-
mers are doughnut-shaped according to atomic force microscopy
(AFM) [31], cf. Fig. 1. An antibody raised against prefibrillar oligomers
of Aβ also binds prefibrillar oligomers of many different proteins [32].
Given the high degree of similarity between the mature fibrils, it is not
surprising thatmany commonalities are also seen among the prefibrillar
oligomers. Nevertheless, it is still unclear if the doughnut shaped oligo-
mers identified so far are on- or off-pathway species. For α-synuclein
(αSN) the doughnut-shaped oligomer has been shown to be off-
pathway and is most likely the cytotoxic component [33]; another
co-existing oligomeric species is suggested to be on-pathway and
hence transform to fibrils over time [34].

Despite these shared features, nucleation events leading to the for-
mation of oligomers are not likely to adhere to a universal mechanism,
in which a single well-defined nucleus from a specific protein gives rise
to a single down-stream polymerization reaction resulting in fibrils
with a specifiedmorphology. Given themultiple types of conformations
that can stabilize different aggregates and the lack of evolutionary opti-
mization of this process, nucleation is probably a messy business, in
which multiple structurally different nuclei can form and give rise to
structurally distinct fibrils. This is supported by the observation that
fibril seeds isolated from different AD patients with different disease
histories give rise to structurally distinct fibrils which differ not only
from each other but also from fibrils previously formed by Aβ in vitro
[13]. This could also explain the fibril polymorphism seen for many
aggregating proteins. Differences in the resulting fibril structure are
seen for many different proteins. This polymorphism is induced by dif-
ferences in the physico-chemical properties of the environment and this
can for some proteins be overcome by the presence of fibril seeds of a
singlemorphology [35,36]. Themorphology of theprefibrillar oligomers
could be important for their mechanism of cytotoxicity.

3. Proposed modes of oligomer toxicity

Different mechanisms of cytotoxicity exerted by prefibrillar oligo-
mers have been proposed based on various reports. The oligomers or
aggregates might sequester cellular entities essential for cell viability
and indeed transcription factors, proteasomal and, cytoskeletal compo-
nents have been located in amyloid aggregates [37,38]. By interacting
with cellular receptors, the oligomersmight activate signal transduction
pathways leading to apoptosis [39]. The prefibrillar oligomers might
also induce oxidative stress by production of free radicals. These in



Fig. 1.Doughnut-shaped pore-like structures of prefibrillar oligomers imaged using atomic
force microscopy.
Reprinted with permission from [31].

Table 1
List of analytical methods used to investigate oligomer–membrane interactions. Refer-
ences refer to studies with αSN.

Method Measure References

Asymmetrical flow field-flow
fractionation

Binding [46,47]

Circular dichroism Binding and folding [48]
Confocal microscopy Binding, permeabilization

and effect on vesicles
[47–49]

Centrifugation experiments Binding [50]
Differential scanning calorimetry Binding [47]
Dynamic light scattering Binding and effect on vesicles [47]
Tryptophan fluorescence Binding [51]
Ion-channel current measurements Permeabilization [31]
Isothermal titration calorimetry Binding [47]
Vesicle leakage/influx Permeabilization [46,52–54]
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turn lead to lipid and protein oxidation, mitochondrial dysfunction and
increased levels of intracellular calcium [40,41]. In fact a long-standing
link has also been made between increased levels of oxidative stress
(by the production of intracellular reactive oxygen species) and aggre-
gating proteins implicated in neurodegenerative diseases like PD
[42–45]. Another widespread hypothesis is that cytotoxicity is caused
by interaction between the prefibrillar oligomers and the lipid bilayer
of the cell membranes, leading to membrane disruption or even pore
formation. The formation of an actual ion channel could lead to mem-
brane disruption and depolarization, eventually resulting in dysregula-
tion of signal transduction and changes in ion homeostasis [39]. This is
consistent with the original pore formation theory which is supported
by the oligomeric structures observed in Fig. 1. However, a more likely
scenario is that direct interaction between the membrane and the
prefibrillar oligomers destabilizes the membrane. Annular oligomers
have only been detected using transmission electron microscopy
(TEM) and AFM imaging techniques on dried samples and not in solu-
tion, so it cannot be excluded that they are drying artifacts.

Understanding oligomer–membrane interactions is a challenge
involving both biochemists, biophysicists and structural biologists.
Table 1 lists a number of biophysical and biochemical methods used to
study oligomer–membrane interactions.

All of the abovementionedmechanisms are based on a toxic gain-of-
function of the oligomeric species involved in the aggregation pathway.
It is likely that the cytotoxicity does not arise from a single mechanism
but that several of the proposedmechanisms are involved in the cellular
degeneration observed in amyloid diseases. Furthermore, different
mechanisms might be involved depending on whether the aggregation
occurs intra- or extra-cellularly.

Another way in which prefibrillar oligomers can interact with lipid
membranes is by extracting lipids from the membrane and incorporat-
ing them into the aggregates [55]. Many different aggregation-prone
proteins have been shown to form membrane-active prefibrillar oligo-
mers, including αSN [33], Aβ [56], prion protein [57], islet amyloid
polypeptide (IAPP) [58] and the fasciclin1-4 (Fas1-4) fragment of
transforming growth factor-β induced protein (TGFBIp) [59]. Two of
these protein oligomeric systems (αSN and Fas1-4) will be reviewed
in detail below. Membrane-active oligomers have also been reported
for oligomers of non-disease related protein such as the yeast prion pro-
tein Ure2 [60] and the N-terminal fragment of Hyp-F from Escherichia
coli [61]. Anionic surfaces, in particular anionic lipids, are known to
play a significant role in the nucleation of aggregation by unfolding pro-
teins and recruiting oligomers [62].

4. Structural determinants of oligomer cytotoxicity

The link between structural determinants and the cytotoxicity of
oligomers has been investigated by formation of stable oligomers of
HypF-N, a non-disease associated protein from E. coli [61]. This protein
forms two different oligomers that are indistinguishable from each
other in terms of morphology and ThT binding, yet differ markedly in
cytotoxicity as monitored by MTT reduction and Hoechst staining. One
oligomer is completely non-toxic and the other is just as toxic as Aβ42

oligomers. The two different oligomers are formed under different con-
ditions (50 mM acetate buffer, 12% (v/v) trifluoroethanol, 2 mM DTT,
pH 5.5 for non-toxic oligomers and 20 mM trifluoroacetic acid,
330 mM NaCl, pH 7 for toxic oligomers) but both of them are stable
for the duration of the variousmeasurements (at least 24 h). Importantly,
hydrophobic regions in the toxic oligomers are more solvent-exposed
(and thus less well organized) than those in the non-toxic oligomers.
Both types of oligomers interact with the cell membrane, but only the
toxic ones with increased exposure of hydrophobic patches penetrate



Fig. 2. Structure ofαSN bound to sodiumdodecyl sulfatemicelles. The figure ismade from
PDB file 1XQ8 [72].

Fig. 3.Model of the major αSN oligomer based on SAXS [33]. The purple ellipse indicates
the structured core, while the pink halo represents the surrounding shell of disordered
protein.
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the membrane. It is very likely that the increased plasticity and solvent-
exposure of the toxic oligomer facilitate this membrane disruption and
cell penetration.

The correlation between cytotoxicity and increased exposure of
hydrophobic patches as well as less dense packing of the hydrophobic
core has also been reported for Aβ40 protofibrils when compared to
mature fibrils [63]. Interestingly, for the protein αSN two different olig-
omeric species have also been detected during the aggregation process.
In one study, the cytotoxic formwas found to bemore highly structured
(as measured by proteinase K resistance and exposure of hydrophobic
side chains to the solvent) than the non-toxic oligomer [64], in striking
contrast to the HypF-N oligomers. The cytotoxic oligomers were pro-
posed to originate from the interconversion of the non-toxic oligomers
at later time-points during the aggregation. The cytotoxic oligomers
were also found to be released from mature fibrils by dissociation,
suggesting that mature fibrils could be metastable storage states for
cytotoxic oligomers (though release of oligomers is likely confined to
the ends of the fibrils).

In another study of αSN oligomers two oligomeric species were
found to co-exist [34]. Type I oligomers were more protected against
hydrogen/deuterium exchange in the backbone and data suggested
that they could revert back to the monomer and also forms mature fi-
brils, whereas type II oligomers were less protected against hydrogen/
deuterium exchange and hence more flexible. Type II oligomers formed
amorphous aggregates and are thought to be off-pathway in the aggre-
gation process [30]. Type I oligomers were only found at low levels and
the highly dynamic equilibriumwith the oligomer and the on-pathway
aggregation of this species could lead to the mistaken assumption that
the oligomeric fractions previously obtained forαSN are homogeneous.
Oligomer size heterogeneities have also been reported [33]. Although
the authors could not directly identify which oligomer is cytotoxic,
the abundance of type II oligomers alongside the decreased backbone
protection against hydrogen/deuterium exchange suggests increased
flexibility compared to type I oligomers, in common with the cytotoxic
HypF-N oligomer, and indicates that the off-pathway oligomer is the
one responsible for the α-synuclein oligomer cytotoxicity.

Overall, a high degree of flexibility and less dense packing of the
hydrophobic core in the oligomer structure together with increased ex-
posure of hydrophobic patches on the surface of prefibrillar oligomers
appear to be important for oligomer cytotoxicity — though this might
not be the case for all oligomers (cf. [64]).

5.α-Synuclein oligomers and theirmode of action on themembrane

αSN has now for more than a decade been one of the most investi-
gated proteins within the fields of neurodegenerative diseases and pro-
tein misfolding. αSN became linked to Parkinson's disease (PD) in the
late 1990s due to two important findings: (1) certain mutations in the
αSN gene led to early onset PD [65] and (2)αSN is the primary constit-
uent of the amyloid materiel, so-called Lewy bodies, which are found in
the brains of PD patients [66]. αSN is an intrinsically disordered protein
of 140 residues. It has no persistent structure at physiological condi-
tions, but long-range interactions reduce the hydrodynamic volume
compared to a fully extended protein [67,68]. The primary sequence of
αSN is normally divided into three regions: (1) the N-terminal region
(residues 1–60) which is highly basic, (2) the NAC (non-amyloid-β
component) region (residues 61–95) which is hydrophobic having
only few charged residues, and (3) the C-terminal (residues 96–140)
which is highly acidic and is disordered in both the amyloid fibril [69]
and oligomer state [34,70].

5.1. Binding of αSN monomers to membranes

The association of the αSN monomer with membranes is believed
to be important for its physiological role [31,71]. Upon binding to a
membrane, the N-terminal and NAC regions fold into an amphipathic
α-helical structure. The NMR-based structure of αSN in association
with sodium dodecyl sulfate micelles (Fig. 2), reveals two α-helices,
helix N (residues 3–37) and helix C (residues 45–92), the latter contain-
ing both N-terminal and NAC regions. The two helices are linked by an
ordered linker in an anti-parallel arrangement (residues 38–44). The
C-terminus remains disordered in the membrane-bound structure [72].
There is compelling data that membrane binding is a two-step process
initiated by the N-terminal residues 3–25, followed by a subsequent
coil–helix transition of residues 26–97 [73,74]. A recent solid-state
NMR study on the membrane interaction of the αSN monomer with
anionic small unilamellar vesicles (SUVs) demonstrated how residues
6–25 function as a rigidly bound membrane anchor independent of
lipid composition. They further demonstrated how themembrane bind-
ing of residues 26–98 is dependent on lipid composition and therefore
defines the affinity of the αSNmonomer towards membranes. The dis-
ordered conformation of the C-terminus in the membrane bound form
was confirmed, however transient interactions with the membrane
surface were observed [75]. The αSN monomer is curvature sensing
and binds preferentially to smaller vesicles such as SUVs and large
unilamellar vesicles (LUVs) [76,77]. Upon binding of the monomer to
SUVs and LUVs, membrane remodeling has been observed [73,78].

Though intrinsically disordered, αSN is able to form amyloid fibrils
and oligomeric structures which are ordered aggregates with well-
defined intermolecular contacts. As discussed previously in this review,
different types of αSN oligomers have been identified. Here we will
focus on one type of αSN oligomers. These oligomers were initially
purified and characterized by Lansbury and co-workers, who also
demonstrated how the oligomers were able to permeabilize lipid vesi-
cles [79,80]. In the discussion of these oligomers and their interaction
with membranes we will primarily focus on data published by the
Subramaniam group and the authors of the present review, as the
work from these two groups is in many ways complementary.

5.2. Structure of an αSN oligomer

The average oligomer consists of ~30 monomers according to small
angle X-ray scattering (SAXS), size-exclusion chromatography coupled
with multi angle laser light scattering (SEC-MALLS) and single-
molecule fluorescence [33,81]. The oligomer is shaped like an prolate
ellipsoid according to SAXS measurements [33,82], cf. Fig. 3, and its di-
mensions agree well with those obtained from dynamic light scattering
[33,47] and TEM [30]. The oligomers consist of β-sheet structure, likely
forming the oligomer core surrounded by a disordered outer shell
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(Fig. 3) [33,83,84]. According to hydrogen/deuterium exchange mass
spectrometry (HDX-MS), the NAC region together with parts of the
N-terminal region builds up the core of the oligomer whereas the
C-terminal and the early N-terminal are disordered [34] in good agree-
ment with complementary studies [47,51]. These oligomers are ideal as
a model system to elucidate the mechanism of oligomer–membrane
interaction and permeabilization because of their high stability towards
temperature, pH and long-term incubation [30] combined with the rel-
ative simple protocol to produce these oligomers [85]. Furthermore,
these oligomers are not chemically modified or covalently linked, in
fact they can dissociate in the presence of high concentrations of the
chemical denaturant urea [30,83].

5.3. Lipid requirements for membrane interactions

Considering the generic property of the αSN primary sequence to
fold into membranes, it is not surprising that the oligomers show affin-
ity towards membranes. The question is rather why the oligomer form
is more toxic than the monomer form? First, how much more potent
is the oligomer compared to themonomer in permeabilization of mem-
branes? Based on vesicle leakage experiments we have recently shown
that 1αSN oligomer (consisting of ~30monomers) induce asmuch ves-
icle leakage as ~500monomermolecules. As for theαSNmonomer [86],
the oligomer also selectively binds to anionic lipids andmost oligomer–
membrane studies have been carried out with anionic phospholipids
[46,54,87]. In one study, the authors systematically varied the lipid com-
position of giant unilamellar vesicles (GUVs) and observed oligomer
binding to different anionic lipids [87]. No bindingwas detected to zwit-
terionic POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine)
GUVs, however lipid mixtures of POPC and the anionic lipid POPG
(1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol) led to oligo-
mer binding. A key observation in this study was that binding did
not per se induce permeabilization of the vesicles as measured with
dye leakage [87].

5.4. Mechanisms of membrane perturbation by oligomers

As discussed previously in this review, there is a general trend that
oligomers have more hydrophobic surface exposed area (or at least
larger surface exposed hydrophobic patches) than the monomer and
amyloid fibril form [88]. This is believed to be one of the key reasons
for their potent membrane permeabilization. As for the monomer [86]
the oligomer preferentially binds to the liquid disordered domains
rather than the liquid ordered domains [87]. This might be due to the
higher degree of accessibility of the hydrocarbon core of the lipid bilayer
in the liquid disordered domain whereas the lipid bilayer is tightly
packed in the liquid ordered phase. Thus, hydrophobic interactions
between the oligomer and lipid bilayer is more favored when the lipids
are in the liquid disordered phase. Increased headgroup spacing, leading
to increased accessibility of the lipid bilayers hydrocarbon core, also led
to increased permeabilization, again highlighting the importance of
hydrophobic interactions [54].

5.5. Role of the N-terminus in membrane interactions

In addition to hydrophobic interactions, N-terminal interactions
appear to be equally important for monomer and oligomer association
withmembranes. A simple and elegant fluorescence study, using select-
ed single tryptophan mutant of αSN, gave the first indication of the
importance of the N-terminal in oligomer–membrane interactions
[51]. αSN has a net negative charge so intuitively we would also expect
the basic N-terminal to take part in the interactions with anionic lipids.
Furthermore, deletions of the early N-terminal of theαSN sequence led
to decreased αSN induced toxicity in yeast [89]. We therefore investi-
gated how deletions in the first 13 N-terminal residues affected mem-
brane interactions. Our data clearly showed that the interaction of
both monomer and oligomer was almost completely abolished upon
deletion of residues 2–11, suggesting that the extreme N-terminal part
is essential for both monomer–membrane and oligomer–membrane
interactions. In the oligomeric state, the early N-terminal only seems
to be partly protected towards H/D exchange [34] and therefore it
might be able to initiate binding and act as a rigid anchor as described
for themonomer. Thismight include the formation of a structure similar
to helix N, in good agreementwith the slight increase inα-helical struc-
ture upon membrane binding [48]. The binding mode of the oligomer
will naturally differ from that of the monomer, as most of the sequence
that forms helix C is involved in the oligomer core. However, we find
it likely that the initiation of the interaction happens in a similar
way. We speculate that the potency of αSN oligomers to permeabilize
membranes stems from the possible fixation of several N-terminals in
proximity (i.e. increased avidity) combined with hydrophobic interac-
tions which lead to disturbance of the hydrophobic core of the lipid
bilayer.

These oligomers have also been demonstrated to be more cytotoxic
towards neuronal cells than monomers [47]. While recent data suggest
that the membrane permeabilization observedwith negatively charged
vesicles might not be as dramatic in more complex membrane systems
[48], more research is needed in this direction. Interestingly, the oligo-
mers can also bind to membranes without inducing membrane disrup-
tion [87], thus there might be several binding modes dependent on the
chemistry of the lipids and the ionic strength and pH of the solution.

Currently, no solution based structural methods show an inner pore
in the αSN oligomer structure. Rather, our recent structural model
(Fig. 3) suggests a solid core [33]. Until we obtain a higher-resolution
oligomer structure, it will be difficult to achieve a complete description
of how αSN oligomers permeabilize membranes.

6. Keeping an eye on Fas1-4: different oligomers in
different pathways

Another example of an aggregation prone protein forming
membrane-disruptive prefibrillar oligomers is provided by the protein
Fas1-4. Fas1-4 is the C-terminal domain of the full-length protein
transforming growth factor-β induced protein (TGFBIp). This domain
shows promise as a model system for TGFBIp-related diseases, since
mutations destabilize the full-length protein and the Fas1-4 domain to
the same degree [90]. Several genetic analyses have linked TGFBIp to
corneal dystrophies, in which proteinaceous deposits in the cornea
lead to loss of vision [91–93]. TGFBIp is an extracelluar multi-domain
protein consisting of an N-terminal cysteine-rich region, four consecu-
tive and homologous fasciclin-1 domains (of which Fas1-4 is the last)
and a C-terminal RGD integrin-binding motif [94]. TGFBIp constitutes
the majority of the protein inclusions found in the cornea of corneal
dystrophy patients, and abnormal turnover of the protein has been
associated with various mutants [95,96]. More than 30 mutations
in TGFBIp have been linked to the disease, which is inherited in an
autosomal-dominant manner and is phenotypically heterogeneous
with different mutations giving rise to different phenotypes [92]. Inter-
estingly, some disease-linkedmutations enhance TGFBIp stability while
other disease-linkedmutations destabilize it [90]. Apart from onemuta-
tional hotspot in residue 124, all disease-causingmutations are found in
Fas1-4 (residues 502–632 of TGFBIp) [92,97].

6.1. Concentration-dependent changes in A546T Fas1-4 aggregation
behavior

The mutation A546T in TGFBIp leads to a very aggressive form of
corneal dystrophy with an age of onset of 35 to 40 years and results in
lattice corneal dystrophy with amyloid deposits found in the stroma of
the cornea [98]. A546T Fas1-4 is significantly destabilized as compared
to wild type [59,90] and forms polymorphic fibrils in vitro. Aggregation
at high protein concentrations gives rise to short and curly fibrils with a



1902 M. Andreasen et al. / Biochimica et Biophysica Acta 1848 (2015) 1897–1907
mixture of α-helical and β-sheet structure, while aggregation at lower
concentrations results in long and straight fibrils with pure β-sheet
structure [59]. These two fibril morphologies are preceded by different
species of prefibrillar oligomers with distinct membrane activity.
The oligomers formed during aggregation at high concentrations are
well defined with a single size distribution and can permeabilize phos-
pholipid vesicles. In contrast, aggregation at lower concentrations
gives rise to a range of different oligomers with different sizes, some
of which are membrane active but less so than the well-defined oligo-
mers formed at higher concentrations (Fig. 4).

Membrane permeability requires the vesicles to contain anionic
lipids; purely zwitterionic lipids elicit no activity. As Fas1-4 aggregation
proceeds, the membrane activity decreases. At low Fas1-4 concentra-
tions, this decrease is more rapid than at higher concentrations, where
membrane activity is still observed at the endpoint of fibrillation. This
could indicate that the oligomers responsible for themembrane perme-
ation disappear either by conversion into fibrils or by dissociation to
monomers which can then be incorporated into the growing fibrils.

The membrane active oligomer species seen at higher concentra-
tions are thought to be formed through very rapid aggregation. This
leads to oligomers of the native monomers being formed and incorpo-
rated into the fibrils, which also explains the α-helical and β-sheet
structure seen in the final fibrils. At lower concentrations, it might
be that the slower kinetics allows for monomer rearrangements,
possibly through partial unfolding before oligomerization occurs.
These oligomers composed of rearranged monomers do not display
membrane activity. The rearrangement of the monomers could also
explain the purely β-sheet structure seen in the fibrils formed at
Fig. 4. Polymorphic fibrillation can lead to the formation of different oligomeric
Reprinted from [59] with permission.
lower concentrations. This indicates that in this specific example
the kinetics of aggregation can also play a central role in the produc-
tion of membrane active oligomers during fibrillation. SAXS has
revealed multimers of full-length TGFBIp at high concentrations,
which may be precursors for the well-defined oligomer species
formed at high concentrations [99].
6.2. Formation of aggregation-prone TGFBIP fragments in vivo

The in vitro oligomers may have parallels in vivo. Lack of blood ves-
sels in the cornea leads to slow protein turnover in the cornea [100]
and may allow prefibrillar oligomers to accumulate in the cornea of
CD patients. These oligomers could even be formed by fragments of
TGFBIp; C-terminal fragments of TGFBIp have been identified in the cor-
nea of patients suffering from lattice corneal dystrophy with amyloid
deposits [101]. These fragments are thought to arise from the catalytic
activity of the serine protease HtrA1. The release of these C-terminal
fragments could lead to oligomers by accelerating the aggregation and
hence posing a threat to corneal cells. Interestingly wild type TGFBIp
has not been observed to form higher order structures in vivo; this has
been attributed to the low effective concentrations of free TGFBIp in
the cornea of healthy individuals [102].

In this specific case the oligomers formed during the aggregation are
distinct in both size, distribution, andmembrane activity, indicating that
the aggregation pathways for the two different fibril types are distinct.
This is thus an example of how fibrillar polymorphism arises from dif-
ferences in the aggregation pathway and different oligomeric species.
species with distinct membrane permeation properties during fibrillation.
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7. Inhibiting oligomer–lipid interaction

The simplestway to circumvent oligomer lipid interactions is to pre-
vent the formation of oligomers altogether. Numerous approaches have
been undertaken in this direction, mostly focusing on the more general
(but not identical) goal of inhibiting amyloid formation. These havemet
with various degrees of success.

7.1. Immunotherapy

One approach has been antibody-mediated immunotherapy using
antibodies raised against the fibrillating protein. Antibodies against Aβ
raised against early-stage Aβ aggregates were indeed found to inhibit
fibril formation and even disaggregate existing fibrils [103]. Further-
more, the concentration of toxic oligomers in the brain following immu-
notherapy can possibly be reduced [104]. Indeed the level of Aβ
oligomers in the brains of mice treated with an antibody raised against
Aβ was reduced [105]. Another clever way to indirectly target amyloid
material with immunization strategies is to target proteins that associ-
ate with amyloid material. With this strategy the physiological role of
the monomer form of the amyloid forming protein will not be affected.
Targeting the serum amyloid P component, which binds amyloid mate-
rial formed by different proteins, leads to depletion of amyloid material
as shownwith Aβ [106,107]. This is potentially also a useful strategy for
oligomers, provided binding partners for oligomers can be identified.
However, while amyloid represents a stable and inert state which can
readily be localized and treated, oligomer interactions are likely more
dynamic and may therefore be more challenging to target.

7.2. Small molecule aggregation inhibitors

Small molecules are also attractive as inhibitors of the formation of
fibrils and possibly oligomers. Unlike antibodies, many small molecules
can cross the blood–brain barrier, and thismakes themattractive for the
treatment of neurodegenerative diseases. The amyloid binding dye
Congo Red (and derivatives thereof) is known to inhibit the aggregation
of several proteins including Aβ, IAPP and polyQ stretches from
huntingtin [108–111]. Many flavonoids can inhibit protein aggregation,
but in general they do so by stabilizing small oligomers [112–115]. One
of themost studied flavonoids is epigallocatechin gallate (EGCG),which
has been shown to bind to both the intrinsically disordered monomeric
state ofαSN and also oligomeric states [116]. EGCG inhibits the aggrega-
tion ofαSNby forminghighermolecularweight oligomers that are non-
toxic and off-pathway [117]. Interestingly it has recently been shown
that Δ9-tetrahydrocannabinol (THC), the active compound from mari-
juana, inhibits Aβ aggregation by reducing the levels of soluble Aβ and
also reduces cytotoxicity, possibly suppressing aggregation altogether
through the reduction in monomeric precursors [118]. Even though
small molecules are a promising drug discovery platform for amyloid
diseases, it may be a challenge to find small molecules that are highly
specific towards single proteins.

7.3. Peptide mimetics of aggregation cores

Peptide based ligands designed to correspond to the central fibrillat-
ing core have also been found to inhibit fibril formation and reduce
cytotoxicity of various aggregating proteins [119–123]. The inhibitory
effect is achieved by binding to the growing ends of fibrils or oligomers.
To aid the inhibitory effect, β-sheet breakers like proline or backbone
N-methylations can be added to the peptide ligand, thereby inhibiting
further growth of the aggregates [122,124]. Peptide ligands which are
able to distinguish between monomers and higher order structures
have also been developed. A peptide that specifically recognizes a con-
formational epitope of oligomeric Aβ and fibrils but not monomeric
Aβ has been shown to reduce the level of higher-ordered structures
when used in combination with an antibody raised against the peptide
ligand [125]. Furthermore, a bivalent peptide ligand for Aβ fused to link-
er specifically recognize early oligomers of Aβ and displays very low
binding to monomeric and mature fibrils of Aβ [126].

7.4. Small molecule aggregation promoters

A different approach to reduce the appearance and cytotoxicity of
oligomers is to speed up the aggregation reaction and thereby reduce
the amount of free toxic oligomers by rapid incorporation and seques-
tering into non-toxic mature fibrils. Various compounds enhance the
aggregation kinetics of Aβ [127], for example the molecule O4 binds to
the hydrophobic amino acids of Aβ, thereby stabilizing self-assembly
into fibrils. Furthermore O4 decreased the concentration of toxic oligo-
mers and suppressed the inhibition of long-term potentiation in hippo-
campal brain slices [128].

7.5. Reduction of oligomers' membrane affinity

All of the abovementioned efforts to inhibit oligomer cytotoxicity
focus on interferencewith the aggregation process andhence formation
of the oligomers. A different approach is to change themembrane affin-
ity.We recently demonstrated that this is how theflavonoid EGCGmod-
ulates the cytotoxicity of oligomers of αSN [47] (Fig. 5). Addition of
EGCG rescued the toxicity of oligomers in both cell-based and vesicle-
based experiments. The presence of EGCG did not change the secondary
structure or the size of the isolated αSN oligomers but significant
changes to theflexibility of the C-terminuswere observed upon binding
of EGCG to the oligomer as seen by NMR. This was ascribed to induction
of structure in the otherwise flexible C-terminal upon binding of EGCG
to the oligomers. The oligomers still bound to themembrane of vesicles
in the presence of EGCG but to a lesser extent than in the absence of the
flavonoid and no permeation or disruption of the vesicles was seen in
the presence of EGCG. The oligomer–membrane interaction is thus
inhibited but not abolished by EGCG, suggesting that the oligomer acts
by destabilizing the membrane rather than by forming an actual pore.
The loss of the C-terminalflexibility by binding of EGCG to the oligomers
could be key to the change in the membrane interaction seen in the
presence of EGCG. This line of work demonstrates that it is possible to
directly change the membrane interactions of prefibrillar oligomers
using small molecules.

8. Amyloid fibril-membrane interactions

In this review the focus is on the interaction of soluble oligomers
with membranes. However, as mentioned in the introduction, there
are many different amyloid fibrils which are also able to perturb mem-
branes e.g. fibrils formed by αSN [33,129], Sup35 [130], IAPP [131] and
β2m-microglobulin [132]. Since fibrils are often easier to form and
obtain in high yields compared to oligomers they are potentially easier
to study inmembrane interaction experiments. The large size offibrils is
a challenge for some biophysical methods as e.g. NMR, however for
some experimental approaches this can also be an advantage. One
excellent example of this is the cryoelectron tomography study by the
Saibil and Radford groups, where they present a 3D description ofmem-
brane disruption by β2m-microglobulin fibrils [133]. Their visualization
of fibril–membrane interactions revealed that this interaction can in-
deed be strong and in this case spherical vesicles were reorganized
into teardrop-shaped structures, cf. Fig. 6. Small vesicles were also ob-
served, suggesting that fibrils are able to extract lipids from lipid bilay-
ers. Also, they show how the ends of the β2m-microglobulin fibrils
induce most vesicle damage, stabilized by the sides of the fibrils which
also interact with themembrane. Fibril ends are the reactive site in fibril
elongation and perturbation of lipid bilayers is perhaps caused by higher
hydrophobicity and flexibility in these regions. As for oligomer–
membrane interactions, an anionic lipid composition is essential for
the interaction of β2m-microglobulin fibrils [132].



Fig. 5.Modulation of cytotoxicity of α-synuclein oligomers by inhibiting the lipid specificity of the toxic oligomers through the presence of the flavonoid EGCG.
Reprinted from [47] with permission.
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Another remarkable but differentmechanism of fibril inducedmem-
brane damage stems from the observation that the deleterious effects of
fibrils can also be viewed as a consequence of membrane templated
Fig. 6. Examples of membrane reorganization by β2m-microglobulin fibrils as pi
Reprinted from [133] with permission.
amyloid formation via the process of fibrillation per se. Membrane
surfaces, particularly those containing anionic lipids [134], are able
to bind monomeric amyloid precursors and thus increase their local
ctured in 2D (A–C) and rendered in 3D (D) using cryoelectron tomography.
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concentration [131,135]. This can kick-start amyloid formation and the
resulting conformational rearrangements during fibril elongation can
perturb membranes sufficiently to permeabilize and even radically
reorganize them [55,133,136,137]. One of the best-studied examples is
provided by the hormone IAPP, which forms amyloid fibrils in the pan-
creas of patients with type II diabetes. Fibrillation of IAPP is templated
by phospholipids, and sub-stoichiometric amounts of anionic lipids
accelerate fibrillation considerably more than fibril inducers such as
heparin and HFIP, suggesting that the energy barrier of the rate limiting
step of fibril nucleation is lowered. Monomeric IAPP binds to the
membrane and fibril formation proceeds from there. Strikingly mature
amyloid fibrils do not interact with the membrane, suggesting that it
is really the fibril growth on the membrane which leads to membrane
permeabilization [135,137]. Again anionic lipids are essential for the
binding of IAPP and initiation of fibrillation [138]. Recently it has also
been demonstrated how αSN forms amyloid clusters at the membrane
surface. These structures consist of both protein and lipids extracted
from the vesicles and they compromise the membrane integrity and
leads to a decrease in the lateral diffusion of both protein and lipids
[139,140].

9. Conclusion

The analysis of oligomer–membrane interactions is a highly chal-
lenging task. One of the fundamental challenges in these studies is
the preparation of oligomeric samples which are sufficiently stable
and well-characterized. For now, αSN oligomers appear to be a solid
model system for these studies as they arewell-characterized and high-
ly stable. However, for a better understanding of the mechanisms for
interaction and perturbationmoremodel systems are required together
with the advancement of the biophysical and structural methods used
to analyze these mechanisms.

The “amyloid pore” hypothesis was proposed at an early stage, but
while conceptually appealing it is still not underpinned by direct struc-
tural evidence. Rather, recent data suggest that membrane perturbation
may stem from other destabilization events. Clearly lipid-aggregate
interactions will remain an exciting field of investigation for years to
come.
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