65 research outputs found

    Foxl2 functions in sex determination and histogenesis throughout mouse ovary development

    Get PDF
    Background. Partial loss of function of the transcription factor FOXL2 leads to premature ovarian failure in women. In animal models, Foxl2 is required for maintenance, and possibly induction, of female sex determination independently of other critical genes, e.g., Rspo1. Here we report expression profiling of mouse ovaries that lack Foxl2 alone or in combination with Wnt4 or Kit/c-Kit. Results. Following Foxl2 loss, early testis genes (including Inhbb, Dhh, and Sox9) and several novel ovarian genes were consistently dysregulated during embryonic development. In the absence of Foxl2, expression changes affecting a large fraction of pathways were opposite those observed in Wnt4-null ovaries, reinforcing the notion that these genes have complementary actions in ovary development. Loss of one copy of Foxl2 revealed strong gene dosage sensitivity, with molecular anomalies that were milder but resembled ovaries lacking both Foxl2 alleles. Furthermore, a Foxl2 transgene disrupted embryonic testis differentiation and increased the levels of key female markers. Conclusion. The results, including a comprehensive principal component analysis, 1) support the proposal of dose-dependent Foxl2 function and anti-testis action throughout ovary differentiation; and 2) identify candidate genes for roles in sex determination independent of FOXL2 (e.g., the transcription factors IRX3 and ZBTB7C) and in the generation of the ovarian reserve downstream of FOXL2 (e.g., the cadherin-domain protein CLSTN2 and the sphingomyelin synthase SGMS2). The gene inventory is a first step toward the identification of the full range of pathways with partly autonomous roles in ovary development, and thus provides a framework to analyze the genetic bases of female fertility

    Long-term neurological outcome of a cohort of 80 patients with classical organic acidurias.

    Get PDF
    International audienceBACKGROUND: Classical organic acidurias including methylmalonic aciduria (MMA), propionic aciduria (PA) and isovaleric aciduria (IVA) are severe inborn errors of the catabolism of branched-chain amino acids and odd-numbered chain fatty acids, presenting with severe complications. METHODS: This study investigated the long-term outcome of 80 patients with classical organic aciduria (38 with MMA, 24 with PA and 18 with IVA) by integrating clinical, radiological, biochemical and genetic data. RESULTS: Patients were followed-up for a mean of 14 years [age 3.3-46.3 years]. PA included a greater number of patients with abnormal neurological examination (37% in PA, 24% in MMA and 0% in IVA), lower psychometric scores (abnormal evaluation at age 3 years in 61% of patients with PA versus 26% in MMA and 18% in IVA) and more frequent basal ganglia lesions (56% of patients versus 36% in MMA and 17% in IVA). All patients with IVA presented a normal neurological examination and only 1/3 presented cognitive troubles. Prognosis for MMA was intermediate. Biochemical metabolite analysis excluding acute decompensations revealed significant progressive increases of glycine, alanine and glutamine particularly in PA and possibly in MMA but no correlation with neurological outcome. A significant increase of plasma methylmalonic acid was found in MMA patients with intellectual deficiency (mean level of 199 mumol/L versus 70 mumol/L, p < 0.05), with an estimated significant probability of severe outcome for average levels between birth and age 6 years above 167 mumol/L. Urinary 3-hydroxypropionate (3-HP) levels were significantly higher in PA patients with intellectual deficiency (mean level of 68.9 mumol/mmol of creatinine versus 34.6 mumol/mmol of creatinine, p < 0.01), with an estimated significant probability of severe outcome for average levels between birth and age 6 years above 55 mumol/mmol. As for molecular analysis, prognosis of MMA patients with mutations involving the MMAA gene was better compared to patients with mutations involving the MUT gene. CONCLUSION: Propionic aciduria had the most severe neurological prognosis. Our radiological and biochemical data are consistent with a mitochondrial toxicity mechanism. Follow-up plasma MMA and urinary 3-HP levels may have prognostic significance calling for greater efforts to optimize long-term management in these patients

    In Vivo Detection of Succinate by Magnetic Resonance Spectroscopy as a Hallmark of SDHx Mutations in Paraganglioma

    Get PDF
    International audiencePurpose: Germline mutations in genes encoding mitochon-drial succinate dehydrogenase (SDH) are found in patients with paragangliomas, pheochromocytomas, gastrointestinal stromal tumors, and renal cancers. SDH inactivation leads to a massive accumulation of succinate, acting as an oncometabolite and which levels, assessed on surgically resected tissue are a highly specific biomarker of SDHx-mutated tumors. The aim of this study was to address the feasibility of detecting succinate in vivo by magnetic resonance spectroscopy. Experimental Design: A pulsed proton magnetic resonance spectroscopy (1 H-MRS) sequence was developed, optimized, and applied to image nude mice grafted with Sdhb À/À or wild-type chromaffin cells. The method was then applied to patients with paraganglioma carrying (n ¼ 5) or not (n ¼ 4) an SDHx gene mutation. Following surgery, succinate was measured using gas chromatography/mass spectrometry, and SDH protein expression was assessed by immunohistochemistry in resected tumors. Results: A succinate peak was observed at 2.44 ppm by 1 H-MRS in all Sdhb À/À-derived tumors in mice and in all paragangliomas of patients carrying an SDHx gene mutation, but neither in wild-type mouse tumors nor in patients exempt of SDHx mutation. In one patient, 1 H-MRS results led to the identification of an unsus-pected SDHA gene mutation. In another case, it helped define the pathogenicity of a variant of unknown significance in the SDHB gene. Conclusions: Detection of succinate by 1 H-MRS is a highly specific and sensitive hallmark of SDHx mutations. This non-invasive approach is a simple and robust method allowing in vivo detection of the major biomarker of SDHx-mutated tumors. Clin Cancer Res; 22(5); 1120–9. Ó2015 AACR

    Loss of succinate dehydrogenase activity results in dependency on pyruvate carboxylation for cellular anabolism

    Get PDF
    The tricarboxylic acid (TCA) cycle is a central metabolic pathway responsible for supplying reducing potential for oxidative phosphorylation and anabolic substrates for cell growth, repair and proliferation. As such it thought to be essential for cell proliferation and tissue homeostasis. However, since the initial report of an inactivating mutation in the TCA cycle enzyme complex, succinate dehydrogenase (SDH) in paraganglioma (PGL), it has become clear that some cells and tissues are not only able to survive with a truncated TCA cycle, but that they are also able of supporting proliferative phenotype observed in tumours. Here, we show that loss of SDH activity leads to changes in the metabolism of non-essential amino acids. In particular, we demonstrate that pyruvate carboxylase is essential to re-supply the depleted pool of aspartate in SDH-deficient cells. Our results demonstrate that the loss of SDH reduces the metabolic plasticity of cells, suggesting vulnerabilities that can be targeted therapeutically

    Evolutionary Diversification of SPANX-N Sperm Protein Gene Structure and Expression

    Get PDF
    The sperm protein associated with nucleus in the X chromosome (SPANX) genes cluster at Xq27 in two subfamilies, SPANX-A/D and SPANX-N. SPANX-A/D is specific for hominoids and is fairly well characterized. The SPANX-N gave rise to SPANX-A/D in the hominoid lineage ∼7 MYA. Given the proposed role of SPANX genes in spermatogenesis, we have extended studies to SPANX-N gene evolution, variation, regulation of expression, and intra-sperm localization. By immunofluorescence analysis, SPANX-N proteins are localized in post-meiotic spermatids exclusively, like SPANX-A/D. But in contrast to SPANX-A/D, SPANX-N are found in all ejaculated spermatozoa rather than only in a subpopulation, are localized in the acrosome rather than in the nuclear envelope, and are expressed at a low level in several nongametogenic adult tissues as well as many cancers. Presence of a binding site for CTCF and its testis-specific paralogue BORIS in the SPANX promoters suggests, by analogy to MAGE-A1 and NY-ESO-1, that their activation in spermatogenesis is mediated by the programmed replacement of CTCF by BORIS. Based on the relative density of CpG, the more extended expression of SPANX-N compared to SPANX-A/D in nongametogenic tissues is likely attributed to differences in promoter methylation. Our findings suggest that the recent duplication of SPANX genes in hominoids was accompanied by different localization of SPANX-N proteins in post-meiotic sperm and additional expression in several nongonadal tissues. This suggests a corresponding functional diversification of SPANX gene families in hominoids. SPANX proteins thus provide unique targets to investigate their roles in the function of spermatozoa, selected malignancies, and for SPANX-N, in other tissues as well

    Constitutively active Foxo3 in oocytes preserves ovarian reserve in mice

    No full text
    During female reproductive life, ovarian follicle reserve is reduced by maturation and atresia until menopause ensues. Foxo3 is required to maintain the ovarian reserve in mice. Here we show that overexpression of constitutively active FOXO3 can increase ovarian reproductive capacity in mice. We find increased follicle numbers and decreased gonadotropin levels in aging FOXO3-transgenic mice compared with wild-type littermates, suggesting maintenance of a greater ovarian reserve. Based on cumulative progeny in aging animals, we find 31-49% increased fertility in transgenic females. The gene expression profile of Foxo3-/- knockout ovaries appears older than that of wild-type littermates, and the transgene induces a younger-looking profile, restoring much of the wild-type transcriptome. This is the first gain-of-function model of augmented reproductive reserve in mice, thus emphasizing the role of Foxo3 as a guardian of the ovarian follicle pool in mammals and a potential determinant of the onset of menopause

    Absence of Mutations Involving the Lim Homeobox Domain Gene LHX9 in 46,XY Gonadal Agenesis and Dysgenesis

    No full text
    The etiology of most cases of 46,XY gonadal dysgenesis in the absence of extragenital anomalies is not accounted for by mutations in the genes known to date to be involved in sex determination. We have investigated the possibility that mutations in the gene LHX9, whose murine ortholog causes isolated gonadal agenesis when inactivated, might be responsible for gonadal dysgenesis and agenesis in humans. We isolated a human LHX9 complementary DNA (cDNA), mapped the gene to the long arm of human chromosome 1, and determined its genomic structure. We found that LHX9 is highly conserved between species, sharing in particular over 98% amino acid identity. A mutational screen was performed in a sample of patients with a range of gonadal maldevelopment, including bilateral gonadal agenesis in two sisters with an opposite sex karyotype. We did not detect mutations in the open reading frame of LHX9 in the patients studied. However, the extent of between-species structural conservation suggests that LHX9 deserves further consideration as a determinant of gonadal function in humans

    A comparison of immediate release and delayed release cysteamine in 17 patients with nephropathic cystinosis

    No full text
    Background!#!Nephropathic cystinosis is a rare and severe metabolic disease leading to an accumulation of cystine in lysosomes which especially harms kidney function. A lifelong therapy with the aminothiol cysteamine can delay the development of end-stage renal disease and the necessity of kidney transplantation. The purpose of our study was to compare the effectiveness of immediate-release and delayed-release cysteamine on cystine and cysteamine levels as well as assessing the onset of adverse effects.!##!Methods!#!We retrospectively analysed cystine and cysteamine levels of 17 patients after a single dose of immediate-release cysteamine (Cystagon®, Mylan Pharmaceuticals, Canonsburg, PA and Recordati Pharma GmbH) as well as a single dose of delayed-release cysteamine (Procysbi®; Horizon Pharma USA and Chiesi Farmaceutici S.p.A., Parma, Italy) respectively. Data were collected during a period of three years in the context of optimizing the individual treatment regimens. The dose of DR-cysteamine was reduced to 70% of the equivalent dose of IR-cysteamine. The efficacy of both formulas in depleting white blood cells' cystine levels and their side effects were compared.!##!Results!#!Immediate (IR)- and delayed-release (DR) cysteamine effectively decreased intracellular cystine levels under the target value of 0.5 nmol cystine/mg protein, while fewer side effects occurred under DR-cysteamine. Mean maximum levels of cysteamine were reached after 60 min with IR-cysteamine and after 180 min with DR-cysteamine.!##!Conclusion!#!A therapy with DR-cysteamine is as effective as IR-cysteamine while less side effects were reported. Our data show that DR-cysteamine should be dosed higher than 70% of the equivalent dose of IR-cysteamine in order to decrease cystine levels over an extended period of time. Moreover, our data suggest increasing the dosing scheme of Procysbi® to three times daily, to prevent a rapid decrease and achieve a steadier decline in cystine levels. Due to the more convenient dosing scheme, DR-cysteamine might ameliorate therapy adherence and improve patients' quality of life

    Loss of Wnt4 and Foxl2 leads to female-to-male sex reversal extending to germ cells

    No full text
    The discovery that the SRY gene induces male sex in humans and other mammals led to speculation about a possible equivalent for female sex. However, only partial effects have been reported for candidate genes experimentally tested so far. Here we demonstrate that inactivation of two ovarian somatic factors, Wnt4 and Foxl2, produces testis differentiation in XX mice, resulting in the formation of testis tubules and spermatogonia. These genes are thus required to initiate or maintain all major aspects of female sex determination in mammals. The two genes are independently expressed and show complementary roles in ovary morphogenesis. In addition, forced expression of Foxl2 impairs testis tubule differentiation in XY transgenic mice, and germ cell-depleted XX mice lacking Foxl2 and harboring a Kit mutation undergo partial female-to-male sex reversal. The results are all consistent with an anti-testis role for Foxl2. The data suggest that the relative autonomy of the action of Foxl2, Wnt4 and additional ovarian factor(s) in the mouse should facilitate the dissection of their respective contributions to female sex determination
    corecore