82 research outputs found
The effect of magnetic resonance imaging on mercury release from dental amalgam at 3T and 7T
Objectives To measure mercury release from standardised hydroxyapatite/amalgam constructs during MRI scanning and investigate the impact of static field strength and radiofrequency (RF) power on mercury release. Methods Amalgam was placed into 140 hydroxyapatite disks and matured for 14-days in artificial saliva. The solution was replaced, and samples split into five groups of 28 immediately prior to MRI. One group had no exposure, and the remainder were exposed to either a 3T or 7T MRI scanner, each at high and low RF power. Mercury concentration was measured by inductively coupled plasma mass spectrometry. Groups were compared using one-way ANOVA, and two-way ANOVA for main effects/ interaction of field strength/ RF power. Results Mercury concentration was increased in the 7T groups (high/ low: 15.43/ 11.33 ng mL−1) and 3T high group (3.59) compared to control (2.44). MRI field strength significantly increased mercury release (p < .001) as did RF power (p = .030). At 3T, mercury release was 20.3 times lower than during maturation of dental amalgam, and for the average person an estimated 1.50 ng kg−1 of mercury might be released during one 3T investigation; this is substantially lower than the tolerable weekly intake of 4,000 ng kg−1. Conclusion Mercury release from amalgam shows a measurable increase following MRI, and the magnitude changes with magnetic field strength and RF power. The amount of mercury released is small compared to release during amalgam maturation. Amalgam mercury release during MRI is unlikely to be clinically meaningful and highly likely to remain below safe levels
Detection of the Natural Alpha Decay of Tungsten
The natural alpha decay of 180W has been unambiguously detected for the first
time. The alpha peak is found in a (gamma,beta and neutron)-free background
spectrum. This has been achieved by the simultaneous measurement of phonon and
light signals with the CRESST cryogenic detectors. A half-life of T1/2 = (1.8
+- 0.2) x 10^18 y and an energy release of Q = (2516.4 +- 1.1 (stat.) +- 1.2
(sys.)) keV have been measured. New limits are also set on the half-lives of
the other naturally occurring tungsten isotopes.Comment: Submitted to Physical Review C Revised versio
Food-induced Emotional Resonance Improves Emotion Recognition
The effect of food substances on emotional states has been widely investigated, showing, for example, that eating chocolate is able to reduce negative mood. Here, for the first time, we have shown that the consumption of specific food substances is not only able to induce particular emotional states, but more importantly, to facilitate recognition of corresponding emotional facial expressions in others. Participants were asked to perform an emotion recognition task before and after eating either a piece of chocolate or a small amount of fish sauce – which we expected to induce happiness or disgust, respectively. Our results showed that being in a specific emotional state improves recognition of the corresponding emotional facial expression. Indeed, eating chocolate improved recognition of happy faces, while disgusted expressions were more readily recognized after eating fish sauce. In line with the embodied account of emotion understanding, we suggest that people are better at inferring the emotional state of others when their own emotional state resonates with the observed one
Abiotic ammonium formation in the presence of Ni-Fe metals and alloys and its implications for the Hadean nitrogen cycle
Experiments with dinitrogen-, nitrite-, nitrate-containing solutions were conducted without headspace in Ti reactors (200°C), borosilicate septum bottles (70°C) and HDPE tubes (22°C) in the presence of Fe and Ni metal, awaruite (Ni80Fe20) and tetrataenite (Ni50Fe50). In general, metals used in this investigation were more reactive than alloys toward all investigated nitrogen species. Nitrite and nitrate were converted to ammonium more rapidly than dinitrogen, and the reduction process had a strong temperature dependence. We concluded from our experimental observations that Hadean submarine hydrothermal systems could have supplied significant quantities of ammonium for reactions that are generally associated with prebiotic synthesis, especially in localized environments. Several natural meteorites (octahedrites) were found to contain up to 22 ppm Ntot. While the oxidation state of N in the octahedrites was not determined, XPS analysis of metals and alloys used in the study shows that N is likely present as nitride (N3-). This observation may have implications toward the Hadean environment, since, terrestrial (e.g., oceanic) ammonium production may have been supplemented by reduced nitrogen delivered by metal-rich meteorites. This notion is based on the fact that nitrogen dissolves into metallic melts
- …