2,248 research outputs found

    Searching for additional heating - [OII] emission in the diffuse ionized gas of NGC891, NGC4631 and NGC3079

    Get PDF
    We present spectroscopic data of ionized gas in the disk--halo regions of three edge-on galaxies, NGC 891, NGC 4631 and NGC 3079, covering a wavelength range from [\ion{O}{2}] λ\lambda3727\AA to [\ion{S}{2}] λ\lambda6716.4\AA. The inclusion of the [\ion{O}{2}] emission provides new constraints on the properties of the diffuse ionized gas (DIG), in particular, the origin of the observed spatial variations in the line intensity ratios. We used three different methods to derive electron temperatures, abundances and ionization fractions along the slit. The increase in the [\ion{O}{2}]/Hα\alpha line ratio towards the halo in all three galaxies requires an increase either in electron temperature or in oxygen abundance. Keeping the oxygen abundance constant yields the most reasonable results for temperature, abundances, and ionization fractions. Since a constant oxygen abundance seems to require an increase in temperature towards the halo, we conclude that gradients in the electron temperature play a significant role in the observed variations in the optical line ratios from extraplanar DIG in these three spiral galaxies.Comment: 43 pages, 29 figure

    Placing the RPL32 Promoter Upstream of a Second Promoter Results in a Strongly Increased Number of Stably Transfected Mammalian Cell Lines That Display High Protein Expression Levels

    Get PDF
    The use of high stringency selection systems commonly results in a strongly diminished number of stably transfected mammalian cell lines. Here we placed twelve different promoters upstream of an adjacent primary promoter and tested whether this might result in an increased number of colonies; this is in the context of a stringent selection system. We found that only the promoter of the human ribosomal protein, RPL32, induced a high number of colonies in CHO-DG44 cells. This phenomenon was observed when the RPL32 promoter was combined with the CMV, SV40, EF1-α, and the β-actin promoters. In addition, these colonies displayed high protein expression levels. The RPL32 promoter had to be functionally intact, since the deletion of a small region upstream of the transcription start site demolished its positive action. We conclude that adding the RPL32 promoter to an expression cassette in cis may be a powerful tool to augment gene expression levels

    Diffuse Ionized Gas in the Dwarf Irregular Galaxy DDO 53

    Full text link
    The spectral characteristics throughout the dwarf irregular galaxy DDO 53 are studied. The results are very similar to those for other irregular galaxies: high excitation and low values of the [SII]/Halpha ratio. The most likely ionization source is photon leakage from the classical HII regions, without any other source, although the interstellar medium of the galaxy is quite perturbed. Moreover, the physical conditions throughout the galaxy do not change very much because both the photon leakage percentage and the ionization temperature are very similar. In addition, the determined metal content for two HII regions indicates that DDO 53 is a low-metallicity galaxy.Comment: 32 pages, 9 figures, 7 tables. AJ, in pres

    Development of a SiPM Camera for a Schwarzschild-Couder Cherenkov Telescope for the Cherenkov Telescope Array

    Full text link
    We present the development of a novel 11328 pixel silicon photomultiplier (SiPM) camera for use with a ground-based Cherenkov telescope with Schwarzschild-Couder optics as a possible medium-sized telescope for the Cherenkov Telescope Array (CTA). The finely pixelated camera samples air-shower images with more than twice the optical resolution of cameras that are used in current Cherenkov telescopes. Advantages of the higher resolution will be a better event reconstruction yielding improved background suppression and angular resolution of the reconstructed gamma-ray events, which is crucial in morphology studies of, for example, Galactic particle accelerators and the search for gamma-ray halos around extragalactic sources. Packing such a large number of pixels into an area of only half a square meter and having a fast readout directly attached to the back of the sensors is a challenging task. For the prototype camera development, SiPMs from Hamamatsu with through silicon via (TSV) technology are used. We give a status report of the camera design and highlight a number of technological advancements that made this development possible.Comment: 8 pages, 5 figures, In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Signature of Fermi surface anisotropy in point contact conductance in the presence of defects

    Get PDF
    In a previous paper (Avotina et al.,Phys. Rev. B Vol.71, 115430 (2005)) we have shown that in principle it is possible to image the defect positions below a metal surface by means of a scanning tunnelling microscope. The principle relies on the interference of electron waves scattered on the defects, which give rise to small but measurable conductance fluctuations. Whereas in that work the band structure was assumed to be free-electron like, here we investigate the effects of Fermi surface anisotropy. We demonstrate that the amplitude and period of the conductance oscillations are determined by the local geometry of the Fermi surface. The signal results from those points for which the electron velocity is directed along the vector connecting the point contact to the defect. For a general Fermi surface geometry the position of the maximum amplitude of the conductance oscillations is not found for the tip directly above the defect. We have determined optimal conditions for determination of defect positions in metals with closed and open Fermi surfaces.Comment: 23 pages, 8 figure

    Physical Conditions in Barnard's Loop, Components of the Orion-Eridanus Bubble, and Implications for the WIM Component of the ISM

    Get PDF
    We have supplemented existing spectra of Barnard's Loop with high accuracy spectrophotometry of one new position. Cloudy photoionization models were calculated for a variety of ionization parameters and stellar temperatures and compared with the observations. After testing the procedure with recent observations of M43, we establish that Barnard's Loop is photoionized by four candidate ionizing stars, but agreement between the models and observations is only possible if Barnard's Loop is enhanced in heavy elements by about a factor of 1.4. Barnard's Loop is very similar in properties to the brightest components of the Orion-Eridanus Bubble and the Warm Ionized Medium (WIM). We are able to establish models that bound the range populated in low-ionization color-color diagrams (I([SII])/I(H{\alpha}) versus I([NII])/I(H{\alpha})) using only a limited range of ionization parameters and stellar temperatures. Previously established variations in the relative abundance of heavy elements render uncertain the most common method of determining electron temperatures for components of the Orion-Eridanus Bubble and the WIM based on only the I([NII])/I(H{\alpha}) ratio, although we confirm that the lowest surface brightness components of the WIM are on average of higher electron temperature. The electron temperatures for a few high surface brightness WIM components determined by direct methods are comparable to those of classical bright H II regions. In contrast, the low surface brightness HII regions studied by the Wisconsin H{\alpha} Mapper are of lower temperatures than the classical bright HII regions

    Confirmation of the topology of the Wendelstein 7-X magnetic field to better than 1:100,000

    Get PDF
    Fusion energy research has in the past 40 years focused primarily on the tokamak concept, but recent advances in plasma theory and computational power have led to renewed interest in stellarators. The largest and most sophisticated stellarator in the world, Wendelstein 7-X (W7-X), has just started operation, with the aim to show that the earlier weaknesses of this concept have been addressed successfully, and that the intrinsic advantages of the concept persist, also at plasma parameters approaching those of a future fusion power plant. Here we show the first physics results, obtained before plasma operation: that the carefully tailored topology of nested magnetic surfaces needed for good confinement is realized, and that the measured deviations are smaller than one part in 100,000. This is a significant step forward in stellarator research, since it shows that the complicated and delicate magnetic topology can be created and verified with the required accuracy.EURATOM 633053U.S. Department of Energy DE-AC02-09CH1146
    corecore