1,437 research outputs found
Magnetization driven metal - insulator transition in strongly disordered Ge:Mn magnetic semiconductors
We report on the temperature and field driven metal-insulator transition in
disordered Ge:Mn magnetic semiconductors accompanied by magnetic ordering,
magnetoresistance reaching thousands of percents and suppression of the
extraordinary Hall effect by a magnetic field. Magnetoresistance isotherms are
shown to obey a universal scaling law with a single scaling parameter depending
on temperature and fabrication. We argue that the strong magnetic disorder
leads to localization of charge carriers and is the origin of the unusual
properties of Ge:Mn alloys.Comment: 10 pages, 5 figure
Workspace topologies of industrial 3R manipulators
A mathematical analysis is used to characterize workspace topologies of industrial 3R manipulators. A level-set reconstruction of the workspace is formulated to identify characteristic points with fairly simple algebraic expressions. Thus, industrial 3R manipulators are classified as functions of workspace kinematic properties. Examples are illustrated to show practical usefulness of the proposed workspace characterization
Magneto-optical characterization of MnxGe1-x alloys obtained by ion implantation
Magneto-optical Kerr effect hysteresis loops at various wavelengths in the
visible/near-infrared range have been used to characterize the magnetic
properties of alloys obtained by implanting Mn ions at fixed energy in a Ge
matrix. The details of the hysteresis loops reveal the presence of multiple
magnetic contributions. They may be attributed to the inhomogeneous
distribution of the magnetic atoms and, in particular, to the known coexistence
of diluted Mn in the Ge matrix and metallic Mn-rich nanoparticles embedded in
it [Phys. Rev. B 73, 195207(2006)].Comment: 2 pages, 2 figures. Proceeding of the International Conference on
Magnetism. Kyoto, August 20-25 200
Islanding, growth mode and ordering in Si heteroepitaxy on Ge(001) substrates structured by thermal annealing
Si/Ge heteroepitaxial dots under tensile strain are grown on nanostructured
Ge substrates produced by high-temperature flash heating exploiting the
spontaneous faceting of the Ge(001) surface close to the onset of surface
melting. A very diverse growth mode is obtained depending on the specific
atomic structure and step density of nearby surface domains with different
vicinal crystallographic orientations. On highly-miscut areas of the Ge(001)
substrate, the critical thickness for islanding is lowered to about 5 ML, in
contrast to the 11 ML reported for the flat Ge(001) surface, while on
unreconstructed (1x1) domains the growth is Volmer-Weber driven. An explanation
is proposed considering the diverse relative contributions of step and surface
energies on misoriented substrates. In addition, we show that the bottom-up
pattern of the substrate naturally formed by thermal annealing determines a
spatial correlation for the dot sites
Experimental Analysis of Partial Evaporation Micro-ORC for low -temperature Heat Recovery
In this paper, we present an experimental assessment of the performance of a partial evaporating organic Rankine cycle (PE-ORC) power system. The system converts low temperature heat into electrical energy, with a power size around 1 kW, thus suitable for micro generation in the residential sector. Although the test bench was designed for operating with superheated vapour at the expander inlet, it has demonstrated to be able to work with the expansion occurring entirely in two-phase condition. Since the direct measurement of the vapour quality is not possible using the sensors installed in the test rig, the state of the fluid in the two-phase condition is estimated by means of the thermal balance at the heat exchangers, so the thermodynamic cycle can be evaluated. Temperatures of the heat source in the range between 40 C and 75 C have been tested, and for each temperature value the vapour quality at the expander inlet has been varied by regulating the feed -pump rotating speed. Experimental data are provided regarding the performance of the overall cycle, of the heat exchangers, of the expander and of the feed -pump. It was observed that the effectiveness of the evaporator and the efficiency of the pump are improved with respect to the operation with superheated vapour at the expander inlet. However, the overall performance is lower, especially due to the high ratio of the pump consumption over the expander produced power, commonly called back work ratio (BWR). The latter, under some boundary conditions, has resulted higher than the unit, meaning that the system is not able to produce net electrical power. The aim of the paper is to identify the design characteristics required by a micro -ORC energy system in order to enhance its performance in the PE operating mode
Prognostic significance of serine-phosphorylated STAT3 expression in pT1-T2 oral tongue carcinoma
Objectives. Phosphorylated (activated) STAT3 (pSTAT3) is a regulator of numerous genes that play an essential part in the onset, development and progression of cancer; it is involved in cell proliferation and preventing apoptosis, and in invasion, angiogenesis, and the evasion of immune surveillance. This study aimed mainly to investigate the potential prognostic role of pSTAT3 expression in oral tongue squamous cell carcinoma (SCC). Methods. Phospho-ser727 STAT3 immunolabeling was correlated with prognostic parameters in 34 consecutive cases of pT1\u2013T2 tongue SCCs undergoing primary surgery. Computer-based image analysis was used for the immunohistochemical reactions analysis. Results. Statistical analysis showed a difference in disease-free survival (DFS) when patients were stratified by pN status (P=0.031). Most tumors had variable degrees (mean\ub1SD, 80.7%\ub123.8%) of intense nuclear immunoreaction to pSTAT3. Our findings rule out any significant association of serine-phosphorylated nuclear STAT3 expression with tumor stage, grade, lymph node metastasis, recurrence rate, or DFS. Conclusion. In spite of these results, it is worth further investigating the role of pSTAT3 (serine-and tyrosine-pSTAT3) in oral tongue SCC in larger series because preclinical models are increasingly showing that several anticancer strategies would benefit from STAT3 phosphorylation inhibition
Workspace and Singularity analysis of a Delta like family robot
Workspace and joint space analysis are essential steps in describing the task
and designing the control loop of the robot, respectively. This paper presents
the descriptive analysis of a family of delta-like parallel robots by using
algebraic tools to induce an estimation about the complexity in representing
the singularities in the workspace and the joint space. A Gr{\"o}bner based
elimination is used to compute the singularities of the manipulator and a
Cylindrical Algebraic Decomposition algorithm is used to study the workspace
and the joint space. From these algebraic objects, we propose some certified
three dimensional plotting describing the the shape of workspace and of the
joint space which will help the engineers or researchers to decide the most
suited configuration of the manipulator they should use for a given task. Also,
the different parameters associated with the complexity of the serial and
parallel singularities are tabulated, which further enhance the selection of
the different configuration of the manipulator by comparing the complexity of
the singularity equations.Comment: 4th IFTOMM International Symposium on Robotics and Mechatronics, Jun
2015, Poitiers, France. 201
- …