73 research outputs found

    The Herschel–ATLAS data release 2, Paper I. Submillimeter and far-infrared images of the South and North Galactic Poles: the largest Herschel survey of the extragalactic sky

    Get PDF
    We present the largest submillimeter images that have been made of the extragalactic sky. The Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) is a survey of 660 deg2 with the PACS and SPIRE cameras in five photometric bands: 100, 160, 250, 350, and 500 μm. In this paper we present the images from our two largest fields, which account for ~75% of the survey. The first field is 180.1 deg2 in size, centered on the north Galactic pole (NGP), and the second is 317.6 deg2 in size, centered on the south Galactic pole. The NGP field serendipitously contains the Coma cluster. Over most (~80%) of the images, the pixel noise, including both instrumental noise and confusion noise, is approximately 3.6, and 3.5 mJy pix−1 at 100 and 160 μm, and 11.0, 11.1 and 12.3 mJy beam−1 at 250, 350 and 500 μm, respectively, but reaches lower values in some parts of the images. If a matched filter is applied to optimize point-source detection, our total 1σ map sensitivity is 5.7, 6.0, and 7.3 mJy at 250, 350, and 500 μm, respectively. We describe the results of an investigation of the noise properties of the images. We make the most precise estimate of confusion in SPIRE maps to date, finding values of 3.12 ± 0.07, 4.13 ± 0.02, and 4.45 ± 0.04 mJy beam−1 at 250, 350, and 500 μm in our un-convolved maps. For PACS we find an estimate of the confusion noise in our fast-parallel observations of 4.23 and 4.62 mJy beam−1 at 100 and 160 μm. Finally, we give recipes for using these images to carry out photometry, both for unresolved and extended sources

    SHINING, A Survey of Far-infrared Lines in Nearby Galaxies. I. Survey Description, Observational Trends, and Line Diagnostics

    Get PDF
    We use the Herschel/PACS spectrometer to study the global and spatially resolved far-infrared (FIR) fine-structure line emission in a sample of 52 galaxies that constitute the SHINING survey. These galaxies include star-forming, active-galactic nuclei (AGN), and luminous infrared galaxies (LIRGs). We find an increasing number of galaxies (and kiloparsec size regions within galaxies) with low line-to-FIR continuum ratios as a function of increasing FIR luminosity (LFIRL_{\mathrm{FIR}}), dust infrared color, LFIRL_{\mathrm{FIR}} to molecular gas mass ratio (LFIR/MmolL_{\mathrm{FIR}}/M_{\mathrm{mol}}), and FIR surface brightness (ΣFIR\Sigma_{\mathrm{FIR}}). The correlations between the [CII]/FIR or [OI]/FIR ratios with ΣFIR\Sigma_{\mathrm{FIR}} are remarkably tight (0.3\sim0.3 dex scatter over almost four orders of magnitude in ΣFIR\Sigma_{\mathrm{FIR}}). We observe that galaxies with LFIR/Mmol80LM1L_{\mathrm{FIR}}/M_{\mathrm{mol}} \gtrsim 80\,L_{\odot}\,M_{\odot}^{-1} and ΣFIR1011\Sigma_{\mathrm{FIR}}\gtrsim10^{11} LL_{\odot} kpc2^{-2} tend to have weak fine-structure line-to-FIR continuum ratios, and that LIRGs with infrared sizes 1\gtrsim1 kpc have line-to-FIR ratios comparable to those observed in typical star-forming galaxies. We analyze the physical mechanisms driving these trends in Paper II (Herrera-Camus et al. 2018). The combined analysis of the [CII], [NII], and [OIII] lines reveals that the fraction of the [CII] line emission that arises from neutral gas increases from 60% to 90% in the most active star-forming regions and that the emission originating in the ionized gas is associated with low-ionization, diffuse gas rather than with dense gas in HII regions. Finally, we report the global and spatially resolved line fluxes of the SHINING galaxies to enable the comparison and planning of future local and high-zz studies
    corecore