706 research outputs found

    Thermodynamic database for the Co-Pr system

    Get PDF
    AbstractIn this article, we describe data on (1) compositions for both as-cast and heat treated specimens were summarized in Table 1; (2) the determined enthalpy of mixing of liquid phase is listed in Table 2; (3) thermodynamic database of the Co-Pr system in TDB format for the research articled entitle Chemical partitioning for the Co-Pr system: First-principles, experiments and energetic calculations to investigate the hard magnetic phase W

    Analysing Lyapunov spectra of chaotic dynamical systems

    Full text link
    It is shown that the asymptotic spectra of finite-time Lyapunov exponents of a variety of fully chaotic dynamical systems can be understood in terms of a statistical analysis. Using random matrix theory we derive numerical and in particular analytical results which provide insights into the overall behaviour of the Lyapunov exponents particularly for strange attractors. The corresponding distributions for the unstable periodic orbits are investigated for comparison.Comment: 4 pages, 4 figure

    Breakdown of superfluidity of an atom laser past an obstacle

    Full text link
    The 1D flow of a continuous beam of Bose-Einstein condensed atoms in the presence of an obstacle is studied as a function of the beam velocity and of the type of perturbing potential (representing the interaction of the obstacle with the atoms of the beam). We identify the relevant regimes: stationary/time-dependent and superfluid/dissipative; the absence of drag is used as a criterion for superfluidity. There exists a critical velocity below which the flow is superfluid. For attractive obstacles, we show that this critical velocity can reach the value predicted by Landau's approach. For penetrable obstacles, it is shown that superfluidity is recovered at large beam velocity. Finally, enormous differences in drag occur when switching from repulsive to attractive potential.Comment: 15 pages, 6 figure

    The rp-process and new measurements of beta-delayed proton decay of light Ag and Cd isotopes

    Full text link
    Recent network calculations suggest that a high temperature rp-process could explain the abundances of light Mo and Ru isotopes, which have long challenged models of p-process nuclide production. Important ingredients to network calculations involving unstable nuclei near and at the proton drip line are β\beta-halflives and decay modes, i.e., whether or not β\beta-delayed proton decay takes place. Of particular importance to these network calculation are the proton-rich isotopes 96^{96}Ag, 98^{98}Ag, 96^{96}Cd and 98^{98}Cd. We report on recent measurements of β\beta-delayed proton branching ratios for 96^{96}Ag, 98^{98}Ag, and 98^{98}Cd at the on-line mass separator at GSI.Comment: 4 pages, uses espcrc1.sty. Proceedings of the 4th International Symposium Nuclei in the Cosmos, June 1996, Notre Dame/IN, USA, Ed. M. Wiescher, to be published in Nucl.Phys.A. Also available at ftp://ftp.physics.ohio-state.edu/pub/nucex/nic96-gs

    Classical Scattering for a driven inverted Gaussian potential in terms of the chaotic invariant set

    Full text link
    We study the classical electron scattering from a driven inverted Gaussian potential, an open system, in terms of its chaotic invariant set. This chaotic invariant set is described by a ternary horseshoe construction on an appropriate Poincare surface of section. We find the development parameters that describe the hyperbolic component of the chaotic invariant set. In addition, we show that the hierarchical structure of the fractal set of singularities of the scattering functions is the same as the structure of the chaotic invariant set. Finally, we construct a symbolic encoding of the hierarchical structure of the set of singularities of the scattering functions and use concepts from the thermodynamical formalism to obtain one of the measures of chaos of the fractal set of singularities, the topological entropy.Comment: accepted in Phy. Rev.

    Weak-Localization in Chaotic Versus Non-Chaotic Cavities: A Striking Difference in the Line Shape

    Full text link
    We report experimental evidence that chaotic and non-chaotic scattering through ballistic cavities display distinct signatures in quantum transport. In the case of non-chaotic cavities, we observe a linear decrease in the average resistance with magnetic field which contrasts markedly with a Lorentzian behavior for a chaotic cavity. This difference in line-shape of the weak-localization peak is related to the differing distribution of areas enclosed by electron trajectories. In addition, periodic oscillations are observed which are probably associated with the Aharonov-Bohm effect through a periodic orbit within the cavities.Comment: 4 pages revtex + 4 figures on request; amc.hub.94.

    Response, relaxation and transport in unconventional superconductors

    Full text link
    We investigate the collision-limited electronic Raman response and the attenuation of ultrasound in spin-singlet d-wave superconductors at low temperatures. The dominating elastic collisions are treated within a t-matrix approximation, which combines the description of weak (Born) and strong (unitary) impurity scattering. In the long wavelength limit a two-fluid description of both response and transport emerges. Collisions are here seen to exclusively dominate the relaxational dynamics of the (Bogoliubov) quasiparticle system and the analysis allows for a clear connection of response and transport phenomena. When applied to quasi-2-d superconductors like the cuprates, it turns out that the transport parameter associated with the Raman scattering intensity for B1g and B2g photon polarization is closely related to the corresponding components of the shear viscosity tensor, which dominates the attenuation of ultrasound. At low temperatures we present analytic solutions of the transport equations, resulting in a non-power-law behavior of the transport parameters on temperature.Comment: 22 pages, 3 figure

    Mean field effects in a trapped classical gas

    Full text link
    In this article, we investigate mean field effects for a bosonic gas harmonically trapped above the transition temperature in the collisionless regime. We point out that those effects can play also a role in low dimensional system. Our treatment relies on the Boltzmann equation with the inclusion of the mean field term. The equilibrium state is first discussed. The dispersion relation for collective oscillations (monopole, quadrupole, dipole modes) is then derived. In particular, our treatment gives the frequency of the monopole mode in an isotropic and harmonic trap in the presence of mean field in all dimensions.Comment: 4 pages, no figure submitted to Phys. Rev.

    Review of lobomycosis and lobomycosis-like disease (LLD) in Cetacea from South America. Scientific Committee document SC/60/DW13, International Whaling Commission, June 2008, Santiago, Chile

    Get PDF
    Caused by a yeast-like organism known as Lacazia loboi, Lobomycosis (or lacaziosis) naturally affects humans, common bottlenose dolphins (Tursiops truncates) inhabiting coastal waters from southern Brazil to Gulf of Mexico and Atlantic coast of Florida, as well as botos-cinza (Sotalia guianensis). These species are usually found in coastal waters, subject to runoff provided by large rivers and a considerable burden of associated contaminants. Histological and morphological studies demonstrated that the etiological agent of L. loboi infecting humans is different from the one found to infected dolphins. Moreover, it likely that dolphin-human infections do not occur although infected bottlenose dolphins were from populations engaged in cooperative fishing that involve a relative small number of dolphins and humans. The records of Lobomycosis and Lobomycosis-like disease (LLD) in Tramandaí estuary (29o58´S), Rio Grande do Sul, Brazil, represent the southernmost distribution of L. loboi. On the other hand, the northernmost distribution of this disease is reported in the southern portion of Indian River Lagoon (27°25´N), Florida, USA. LLD seems to be more widespread, infecting both toothed small cetaceans and baleen whales, from the tropical Atlantic to the Pacific. Future studies should evaluate the association with impaired immune function in affected dolphins and the emergency of Lobomycosis. It may be associated with an immunosuppressive factor of environmental origin, such as exposure to pesticides or other agricultural or industrial contaminants, introduced through runoff or point sources of pollution, altering conditions to favour disease emergence. Lobomycosis should be assigned as neglected tropical disease, as should be the case of LLD, if future investigations indicate their connection as an emerging pathogen, its pathogenicity and environment requirements

    Chaos in a double driven dissipative nonlinear oscillator

    Get PDF
    We propose an anharmonic oscillator driven by two periodic forces of different frequencies as a new time-dependent model for investigating quantum dissipative chaos. Our analysis is done in the frame of statistical ensemble of quantum trajectories in quantum state diffusion approach. Quantum dynamical manifestation of chaotic behavior, including the emergence of chaos, properties of strange attractors, and quantum entanglement are studied by numerical simulation of ensemble averaged Wigner function and von Neumann entropy.Comment: 9 pages, 18 figure
    corecore