33 research outputs found

    Metropolitan Cities under Transition: The Example of Hamburg/Germany

    Get PDF
    In the intermediate and long run energy prices and hence transportation costs are expected to increase significantly. According to the reasoning of the New Economic Geography this will strengthen the spreading forces and thus affect the economic landscape. Other influencing factors on the regional distribution of economic activity include the general trends of demographic and structural change. In industrialized countries, the former induces an overall reduction of population and labor force whereas the latter implies an ongoing shift to the tertiary sector and increased specialization. Basically, cities provide better conditions to cope with these challenges than rural regions. Since the general trends affect all economic spaces similarly, city-specific factors also have to be considered in order to derive the impact of rising energy costs on future urban development. With respect to Hamburg regional peculiarities include the overall importance of the harbor as well as the existing composition of the industry and the service sector. The analysis highlights that rising energy and transportation costs will open up a range of opportunities for the metropolitan region.urban development; regional specialization; structural change; demographic change; transportation costs.

    Development perspectives for the City of Hamburg: Migration, commuting, and specialization

    Get PDF
    This paper disentangles the single effects of increasing transportation costs on the arising economic structure and applies them to the regional level of the metropolis of Hamburg. Therefore we begin with a general indexing of the metropolis Hamburg in the context of Germany's ten biggest cities according to some key economic variables. Of major importance are issues of migration, commuting as well as structural change and regional specialization. As will become apparent all these aspects are differently affected by (changing) transportation costs and it is finally the interplay of different forces that shapes the future structure and hence the economic success of the metropolis. From the viewpoint of private individuals, increasing transportation costs affect the outweighing of commuting from home to the working place versus migration. Focusing on the production site, not only direct but also indirect effects that arise from horizontal or vertical relationships gain importance. --

    Metropolitan Cities under Transition: The Example of Hamburg/Germany

    Get PDF
    In the intermediate and long run, energy prices and hence transportation costs are expected to increase significantly. According to the reasoning of the New Economic Geography this will strengthen the spreading forces and thus affect the economic landscape. Other influencing factors on the regional distribution of economic activity include the general trends of demographic and structural change. In industrialized countries, the former induces an overall reduction of population and labor force, whereas the latter implies an ongoing shift to the tertiary sector and increased specialization. Basically, cities provide better conditions to cope with these challenges than do rural regions. Since the general trends affect all economic spaces similarly, especially cityspecific factors have to be considered in order to derive the impact of rising energy costs on future urban development. With respect to Hamburg, regional peculiarities include the overall importance of the harbor as well as the existing composition of the industry and the service sector. The analysis highlights that rising energy and transportation costs will open up a range of opportunities for the metropolitan region.urban development, regional specialization, structural change, demographic change, transportation costs

    Monitoring and modelling antibiotic resistance in Southeast Asian rivers

    Get PDF
    PhD ThesisPinpointing environmental antibiotic resistance (AR) hotspots in rivers in low-and-middle income countries (LMICs) is hindered by a lack of available and comparable AR monitoring data relevant to such settings. Addressing this problem, a comprehensive spatial and seasonal assessment of water quality and AR conditions in a Malaysian river catchment was preformed to identify potential 'simple' surrogates that mirror elevated AR. This included screening for ÎČ-lactam resistant coliforms, 22 antibiotics, 287 AR genes and integrons, and routine water quality parameters, covering absolute concentrations and mass loadings. Novel approaches were developed and applied to advance environmental microbiome and resistome research. To investigate relationships, standardised 'effect sizes' (Cohen's D) were introduced for AR monitoring to improve comparability of field studies. Quantitative microbiome profiling (QMP) was applied to overcome biases caused by relative taxa abundance data. In addition, Hill numbers were introduced as a unified diversity framework for environmental microbiome research. Overall, water quality generally declined, and environmental AR levels increased as one moved downstream the catchment without major seasonal variations, except total antibiotic concentrations that were higher in the dry season (Cohen's D > 0.8, P < 0.05). Among simple surrogates, dissolved oxygen (DO) most strongly correlated (inversely) with total AR gene concentrations (Spearman’s ρ 0.81, P < 0.05). This is suspected to result from minimally treated sewage inputs, which also contain AR bacteria and genes, depleting DO in the most impacted reaches. Thus, although DO is not a measure of AR, relatively lower DO levels reflect wastewater inputs, flagging possible AR hot spots. Furthermore, DO is easy-to-measure and inexpensive, already monitored in many catchments, and exists in many numerical water quality models (e.g., oxygen sag curves). Therefore, combining DO data and prospective modelling (e.g., with the watershed model HSPF) could guide local interventions, especially in LMIC rivers with limited data

    Entwicklungsperspektiven fĂŒr die Stadt Hamburg: Migration, Pendeln und Spezialisierung

    Get PDF
    Im Rahmen des vorliegenden HWWI Policy Papers werden die potentiellen Auswirkungen steigender Transportkosten in ihre einzelnen Komponenten zerlegt und deren Effekte auf die zukĂŒnftige Entwicklung der Metropolregion Hamburg diskutiert. Von besonderer Bedeutung sind dabei Migration, Pendeln, ökonomischer Strukturwandel und regionale Spezialisierung. Es wird deutlich, dass diese Determinanten unterschiedlich von (steigenden) Transportkosten beeinflusst werden und dass letztendlich die Interaktion zwischen diesen Faktoren fĂŒr die kĂŒnftige ökonomische Struktur und den wirtschaftlichen Erfolg Hamburgs entscheidend ist. Aus Sicht der Privatpersonen sind vor allem MobilitĂ€tskosten bedeutsam, wohingegen im Unternehmenskontext direkte und indirekte Effekte, die aus horizontalen und vertikalen Produktionsbeziehungen resultieren, entscheidungsrelevant sind. --

    Scientific concepts and methods for moving persistence assessments into the 21st century

    Full text link
    The evaluation of a chemical substance's persistence is key to understanding its environmental fate, exposure concentration, and, ultimately, environmental risk. Traditional biodegradation test methods were developed many years ago for soluble, nonvolatile, single-constituent test substances, which do not represent the wide range of manufactured chemical substances. In addition, the Organisation for Economic Co-operation and Development (OECD) screening and simulation test methods do not fully reflect the environmental conditions into which substances are released and, therefore, estimates of chemical degradation half-lives can be very uncertain and may misrepresent real environmental processes. In this paper, we address the challenges and limitations facing current test methods and the scientific advances that are helping to both understand and provide solutions to them. Some of these advancements include the following: (1) robust methods that provide a deeper understanding of microbial composition, diversity, and abundance to ensure consistency and/or interpret variability between tests; (2) benchmarking tools and reference substances that aid in persistence evaluations through comparison against substances with well-quantified degradation profiles; (3) analytical methods that allow quantification for parent and metabolites at environmentally relevant concentrations, and inform on test substance bioavailability, biochemical pathways, rates of primary versus overall degradation, and rates of metabolite formation and decay; (4) modeling tools that predict the likelihood of microbial biotransformation, as well as biochemical pathways; and (5) modeling approaches that allow for derivation of more generally applicable biotransformation rate constants, by accounting for physical and/or chemical processes and test system design when evaluating test data. We also identify that, while such advancements could improve the certainty and accuracy of persistence assessments, the mechanisms and processes by which they are translated into regulatory practice and development of new OECD test guidelines need improving and accelerating. Where uncertainty remains, holistic weight of evidence approaches may be required to accurately assess the persistence of chemicals. Integr Environ Assess Manag 2022;18:1454-1487. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC). Keywords: Bioavailability; Biodegradability; Biodegradation; Degradation half-lives; Persistence assessment

    Electricity Market Design 2030-2050: Moving Towards Implementation

    Get PDF
    Climate change and ambitious emission-reduction targets call for an extensive decarbonization of electricity systems, with increasing levels of Renewable Energy Sources (RES) and demand flexibility to balance the variable and intermittent electricity supply. A successful energy transition will lead to an economically and ecologically sustainable future with an affordable, reliable, and carbon-neutral supply of electricity. In order to achieve these objectives, a consistent and enabling market design is required. The Kopernikus Project SynErgie investigates how demand flexibility of the German industry can be leveraged and how a future-proof electricity market design should be organized, with more than 80 project partners from academia, industry, governmental and non-governmental organizations, energy suppliers, and network operators. In our SynErgie Whitepaper Electricity Spot Market Design 2030-2050 [1], we argued for a transition towards Locational Marginal Prices (LMPs) (aka. nodal prices) in Germany in a single step as a core element of a sustainable German energy policy. We motivated a well-designed transition towards LMPs, discussed various challenges, and provided a new perspective on electricity market design in terms of technological opportunities, bid languages, and strategic implications. This second SynErgie Whitepaper Electricity Market Design 2030-2050: Moving Towards Implementation aims at further concretizing the future German market design and provides first guidelines for an implementation of LMPs in Germany. Numerical studies –while not being free of abstractions –give evidence that LMPs generate efficient locational price signals and contribute to manage the complex coordination challenge in (long-term) electricity markets, ultimately reducing price differences between nodes. Spot and derivatives markets require adjustments in order to enable an efficient dispatch and price discovery, while maintaining high liquidity and low transaction costs. Moreover, a successful LMP implementation requires an integration into European market coupling and appropriate interfaces for distribution grids as well as sector coupling. Strategic implications with regard to long-term investments need to be considered, along with mechanisms to support RES investments. As a facilitator for an LMP system, digital technologies should be considered jointly with the market design transition under an enabling regulatory framework. Additional policies can address distributional effects of an LMP system and further prevent market power abuse. Overall, we argue for a well-designed electricity spot market with LMPs, composed of various auctions at different time frames, delivering an efficient market clearing, considering grid constraints, co-optimizing ancillary services, and providing locational prices according to a carefully designed pricing scheme. The spot market is tightly integrated with liquid and accessible derivatives markets, embedded into European market coupling mechanisms, and allows for functional interfaces to distribution systems and other energy sectors. Long-term resource adequacy is ensured and existing RES policies transition properly to the new market design. Mechanisms to mitigate market power and distributional effects are in place and the market design leverages the potential of modern information technologies. Arapid expansion of wind andsolar capacity will be needed to decarbonize the integrated energy system but will most likely also increase the scarcity of the infrastructure. Therefore, an efficient use of the resource "grid" will be a key factor of a successful energy transition. The implementation of an LMPs system of prices with finer space and time granularity promises many upsides and can be a cornerstone for a futureproof electricity system, economic competitiveness, and a decarbonized economy and society. Among the upsides, demand response (and other market participants with opportunity costs) can be efficiently and coherently incentivized to address network constraints, a task zonal systems with redispatch fail at. The transition to LMPs requires a thorough consideration of all the details and specifications involved in the new market design. With this whitepaper, we provide relevant perspectives and first practical guidelines for this crucial milestone of the energy transition

    Scientific concepts and methods for moving persistence assessments into the 21st century

    Get PDF
    34 pĂĄginas.- 2 figuras.- 3 tablas.- 225 referenciasThe evaluation of a chemical substance's persistence is key to understanding its environmental fate, exposure concentration, and, ultimately, environmental risk. Traditional biodegradation test methods were developed many years ago for soluble, nonvolatile, single-constituent test substances, which do not represent the wide range of manufactured chemical substances. In addition, the Organisation for Economic Co-operation and Development (OECD) screening and simulation test methods do not fully reflect the environmental conditions into which substances are released and, therefore, estimates of chemical degradation half-lives can be very uncertain and may misrepresent real environmental processes. In this paper, we address the challenges and limitations facing current test methods and the scientific advances that are helping to both understand and provide solutions to them. Some of these advancements include the following: (1) robust methods that provide a deeper understanding of microbial composition, diversity, and abundance to ensure consistency and/or interpret variability between tests; (2) benchmarking tools and reference substances that aid in persistence evaluations through comparison against substances with well-quantified degradation profiles; (3) analytical methods that allow quantification for parent and metabolites at environmentally relevant concentrations, and inform on test substance bioavailability, biochemical pathways, rates of primary versus overall degradation, and rates of metabolite formation and decay; (4) modeling tools that predict the likelihood of microbial biotransformation, as well as biochemical pathways; and (5) modeling approaches that allow for derivation of more generally applicable biotransformation rate constants, by accounting for physical and/or chemical processes and test system design when evaluating test data. We also identify that, while such advancements could improve the certainty and accuracy of persistence assessments, the mechanisms and processes by which they are translated into regulatory practice and development of new OECD test guidelines need improving and accelerating. Where uncertainty remains, holistic weight of evidence approaches may be required to accurately assess the persistence of chemicals. Integr Environ Assess Manag 2022;1–34. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).Peer reviewe

    Electricity Spot Market Design 2030-2050

    Get PDF
    Driven by the climate conference in Paris in December 2015 countries worldwide are confronted with the question of how to shape their power system and how to establish alternative technologies to reduce harmful CO2 emissions. The German government plans that even before the year 2050, all electricity generated and consumed in Germany should be greenhouse gas neutral [1]. To successfully integrate renewable energies, a future energy system must be able to handle the intermittent nature of renewable energy sources such as wind and solar. One important means to address such electricity production variability is demand-side flexibility. Here, industry plays a major role in responding to variable electricity supply with adequate flexibility. This is where the Kopernikus project SynErgie comes in with more than 80 project partners from academia, industry, governmental, and non-governmental organizations as well as energy suppliers and network operators. The Kopernikus project SynErgie investigates how to best leverage demand-side flexibility in the German industry. The current electricity market design in Germany is not well suited to deal with increasing levels of renewable energy, and it does not embrace demand-side flexibility. Almost 6GW of curtailed power in 2019 provide evidence that changes are needed with respect to the rules governing electricity markets. These rules were designed at a time when electricity generation was concentrated on a few large and dispatchable conventional power plants and demand was considered inelastic. The SynErgie Cluster IV investigates how a future-proof electricity market design should be organized. The corresponding Work Package IV.3.1 more specifically deals with analyzing and designing allocation and pricing rules on electricity spot markets. The resulting design must be well suited to accommodate demand-side flexibility and address the intermittent nature of important renewable energy sources. This whitepaper is the result of a fruitful collaboration among the partners involved in SynErgie Cluster IV which include Germany’s leading research organizations and practitioners in the field. The collaboration led to an expert workshop in October 2020 with participation from a number of international energy market experts such as Mette Bjþrndal (NHH), Endre Bjþrndal (NHH), Peter Cramton (University of Maryland and University of Cologne), and Raphael Heffron (University of Dundee). The whitepaper details the key recommendations from this workshop. In particular, the whitepaper recommends a move to a locational, marginal price-based system together with new bidding formats allowing to better express flexibility. We argue in favor of a one-step introduction of locational, marginal prices instead of repeatedly splitting existing zones. Frequent zone splitting involves recurring political debates as well as short- and long-run instabilities affecting the basis for financial contracts, for example. Importantly, the definition of stable prize zones is very challenging with increasing levels of distributed and renewable energy sources. The recommendation is the outcome of an intense debate about advantages and downsides of different policy alternatives. However, such a transition to locational, marginal prices is not without challenges, and it is a call to arms for the research community, policymakers, and practitioners to develop concepts on how to best facilitate the transition and ensure a reliable and efficient electricity market of the future
    corecore