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Abstract 

Pinpointing environmental antibiotic resistance (AR) hotspots in rivers in low-and-

middle income countries (LMICs) is hindered by a lack of available and comparable 

AR monitoring data relevant to such settings. Addressing this problem, a 

comprehensive spatial and seasonal assessment of water quality and AR conditions 

in a Malaysian river catchment was preformed to identify potential 'simple' surrogates 

that mirror elevated AR. This included screening for β-lactam resistant coliforms, 22 

antibiotics, 287 AR genes and integrons, and routine water quality parameters, 

covering absolute concentrations and mass loadings. Novel approaches were 

developed and applied to advance environmental microbiome and resistome 

research. To investigate relationships, standardised 'effect sizes' (Cohen's D) were 

introduced for AR monitoring to improve comparability of field studies. Quantitative 

microbiome profiling (QMP) was applied to overcome biases caused by relative taxa 

abundance data. In addition, Hill numbers were introduced as a unified diversity 

framework for environmental microbiome research. Overall, water quality generally 

declined, and environmental AR levels increased as one moved downstream the 

catchment without major seasonal variations, except total antibiotic concentrations 

that were higher in the dry season (Cohen's D > 0.8, P < 0.05). Among simple 

surrogates, dissolved oxygen (DO) most strongly correlated (inversely) with total AR 

gene concentrations (Spearman’s ρ 0.81, P < 0.05). This is suspected to result from 

minimally treated sewage inputs, which also contain AR bacteria and genes, 

depleting DO in the most impacted reaches. Thus, although DO is not a measure of 

AR, relatively lower DO levels reflect wastewater inputs, flagging possible AR hot 

spots. Furthermore, DO is easy-to-measure and inexpensive, already monitored in 

many catchments, and exists in many numerical water quality models (e.g., oxygen 

sag curves). Therefore, combining DO data and prospective modelling (e.g., with the 

watershed model HSPF) could guide local interventions, especially in LMIC rivers 

with limited data.  
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Chapter 1. Introduction 

Alexander Fleming’s discovery of penicillin in 1929 revolutionized medicine, making 

common community-acquired, life-threatening infections such as pneumonia and 

gonorrhoea readily treatable1. However, in his Nobel Prize speech 16 years later, 

Flemming (1945) warned that bacteria could become resistant to these remarkable 

drugs. Indeed, after the clinical use of penicillin began in the 1940s, the first 

penicillin-resistant pathogens were soon reported3 and by the late 1960s, penicillin 

treatment was ineffective for more than 80% of community and hospital-acquired 

Staphylococcus aureus infections4.  

 

Figure 1-1. Bacterial resistance to new antibiotics is soon detected after their deployment1. 

In the golden age of antibiotic discovery (1930s to 1960s), the rapid spread of 

resistance was temporarily balanced by the ongoing discovery and clinical 

introduction of new classes of antibiotics (Figure 1-1)1. During this time, researchers 

discovered more than 150 types of antibiotics1. Many of these were easily isolated 

from soil bacteria (actinomycetes), but after this initial discovery, the pharmaceutical 

industry struggled to find new antibacterial drugs5. 

During the 'innovation gap', drug approvals declined with companies focussing on 

modifying existing classes of antibiotics6. The majority of currently prescribed 

antibiotics are derived from a few antibiotic classes that had been discovered by the 

mid-1980s5. Some of the latest registered representatives of novel antibacterial 

classes (linezolid and daptomycin), were introduced in early 2000 (Figure 1-1), but 

their related chemical classes (oxazolidinones and lipopeptides) were first reported or 
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patented in the 1970-80s6–8. This is concerning as resistance to one antibiotic often 

results in resistance to multiple antibiotics within the same class5.  

The development pipeline for new antibiotics is now virtually exhausted and research 

on alternative treatments to replace antibacterial drugs is still at an early stage9. The 

risk of a post-antibiotic era has to be considered, where common infections and 

minor injuries could be lethal again9. Recent predictions suggest that resistance to 

drugs including antibiotic resistance (AR) will result in more annual deaths by 2050 

than cancer10.  

In their global action plan on antimicrobial resistance, the WHO embraces a One 

Health approach11. One Health describes a transdisciplinary effort to address health 

problems involving humans, animals and the environment12. Health is seen as the 

product of all exposures, including the environment13. While human AR exposure has 

been well documented3,14, comprehensive environmental AR exposure assessments 

are lacking to explicitly support a One Health approach to AR. This is often due to 

lack of data. For example, Kelly et al. (2016) showed in a systematic analysis for 21 

countries that only 3% of AR research projects from 2007 to 2013 focussed on the 

role of the environment. However, 80% of sewage worldwide is not treated 

sufficiently16 and the environment plays an important role in receiving and spreading 

residues of antibiotics, antibiotic resistant genes (ARGs) and antibiotic resistant 

bacteria (ARBs)17–19.  

AR is particularly a problem in low and middle-income countries (LMICs). Insufficient 

waste treatment combined with weak healthcare systems, a high prevalence of over-

the-counter sales of antibiotics and insufficiently hygienic living conditions contribute 

to a high burden of disease from resistant pathogens20,21. Southeast (SE) Asia with 

its rapid economic development has particularly been proposed as an epicentre for 

emerging infectious diseases and AR22–25. For example, Malaysia (study site for this 

thesis) was one of the first regions were plasmid-mediated resistance to the last-

resort antibiotic colistin (mcr-1) was detected26. Last-resort antibiotics are drugs 

which are reserved to treat bacteria resistant to all other antibiotics. This means that 

infectious diseases are going to be more difficult to manage with increasing AR.  

Despite the majority of AR burden falling on LMICs, the dynamics of AR have more 

often focused on high-income countries (HICs)27. Monitoring AR in environmental 

samples can be difficult and usually requires expensive equipment28. Many LMICs 
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monitor river water quality through national programmes, but these only include 

standard physical and chemical parameters (such as chemical oxygen demand, 

ammonia, or dissolved oxygen), missing AR release and human exposure data. 

Where environmental AR data exists, it is difficult to translate findings from one study 

to other regions and even within the same region across seasons28.  

To address AR in surface waters in LMICs (Figure 1-2), more cost-effective 

monitoring is required to develop predictive models that can ultimately, guide policy 

such as deciding where to improve existing or build new wastewater treatment 

plants. While water quality models have existed for decades, they typically do not 

include AR processes, lack 'real' data for parametrisation in LMICs such as 

representing watersheds with inadequate wastewater treatment and do not 

adequately consider key aquatic transport processes29.  

 

Figure 1-2. Orang Asli children swimming in a river in Johor, Malaysia30. 

1.1 Thesis aim and tasks 

This study aimed to develop alternate approaches to identify environmental AR 

hotspots in rivers in LMICs. This aim was met by fulfilling the following tasks:  

1. Perform a comprehensive spatial and seasonal assessment of water quality 

and AR conditions in a Southeast Asian river catchment. 

2. Characterise water quality systematically by assessing both, pollutant 

concentration and pollutant mass loading data.  

3. Introduce standardised 'effect sizes' to better understand relationships for AR 

monitoring and improve comparability of field studies.  

4. Identify potential 'simple' water quality surrogates that mirror elevated AR. 
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5. Utilise national water quality datasets and existing surface water quality 

models to estimate AR fate with 'simple' AR surrogates. 

6. Introduce quantitative microbiome profiling and unified Hill number diversities 

to enhance environmental microbiome and resistome research by providing 

more quantitative and representative data analyses. 

1.2 Thesis structure 

The thesis consists of six chapters: 

Chapter 1 provides the motivation for this study and introduces the thesis aim and 

objectives.  

Chapter 2 reviews the literature on monitoring and modelling environmental antibiotic 

resistance, focussing on rivers in Malaysia and the Southeast Asia region.  

Chapter 3 assesses spatial and seasonal variations in water quality and AR 

parameters in a Malaysian river catchment to determine which simple markers best 

mirror locations of elevated AR. This contributes to the tasks 1, 2, 3 and 4.  

Chapter 4 evaluates the use of LMIC monitoring data and surface water quality 

models to pinpoint AR hot spots in rivers where limited data are available. This 

contributes to the tasks 4 and 5.  

Chapter 5 introduces the novel quantitative microbiome profiling approach and 

unified Hill number diversity framework to advance environmental microbiome and 

resistome research. This contributes to the tasks 1, 3 and 6. 

Chapter 6 summarises the thesis findings and recommends future work.   
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Chapter 2. Literature review 

2.1 Development and transfer of antibiotic resistance 

Antibiotic resistance is a natural, widespread phenomenon in the environment and 

has existed since the dawn of our species, with ARGs detected in permafrost 

samples31,32 and isolated from cave microbiomes33,34. Naturally occurring AR is called 

'intrinsic AR'. Over the last decades, however, the presence and abundance of 

resistant genes has increased drastically, closely matching the era of large-scale 

antibiotic consumption1. Knapp et al. (2010) examined archived soil samples from 

1940 to 2008 and found significant increases for all tested resistant gene classes 

since 1940, with tetracycline ARGs being more than 15 times more abundant now 

than in the 1970s.  

Bacteria can acquire resistance either by mutation (vertical gene transfer, VGT, from 

parent to offspring) or by exchanging genetic material (horizontal gene transfer, HGT, 

from cell to cell)27. This resistance due to VGT or HGT is called 'acquired AR'. 

Typically, mutation rates are relatively low with on average one in a thousand 

genome replications incorporating a mutation1. Out of these mutations, one in a 

billion will generate mutants that are more resistant to antibiotics than the 

predecessors1. 

For clinical pathogens, there is evidence that many, if not all, ARGs originated from 

previously mutated environmental bacteria and did not evolve de novo36. For 

example, the CTX-M resistance gene, an extended-spectrum β-lactamase (ESBL) 

often detected in clinical pathogens, has high similarities with chromosomally 

encoded β-lactamases from the genus Kluyvera, an environmental species with little 

or no pathogenic activity against humans37–40. It is inconclusive how many genes in 

bacteria and archaea genomes have been affected by HGT. Depending on the 

method and genome analysed, estimates vary greatly between 0.05-80%41–44.  

HGT is facilitated by mobile genetic elements (MGEs). MGEs are a type of genetic 

material that can move around the genome, or that can be exchanged between 

species. MGEs play a major role in spreading resistance between a) live cells i.e. 

conjugation45, b) via assimilation of extracellular DNA i.e. transformation46, or c) via 

bacteriophage infection i.e. transduction27,47,48 (Figure 2-1a-c). 
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Figure 2-1. Mechanisms of horizontal gene transfer34.  

These HGT mechanisms are well known but novel HGT processes are continuously 

identified such as gene transfer agents (GTAs)44 (Figure 2-1d). GTAs are host-cell 

produced particles that resemble viral structures34 with ARG transfers demonstrated 

for pure cultures49.  

Antibiotics and other stressors such as metals have been observed to increase the 

concentrations of ARBs, ARGs and MGEs in controlled exposure experiments 50,51 

and hospital settings52 but results from environmental field studies are considerably 

less conclusive28,53,54. In surface water, antibiotic concentrations are typically very low 

and selective effects are often weak, not observed, or results are conflicting36,55. In 

addition, surface waters are often polluted by both, antibiotics and faecal matter, 

making it difficult to distinguish between the effect of the chemical stressor and the 

spread of ARGs and MGEs from faeces56.  

2.2 Antibiotic modes of action and antibiotic resistance  

There are ten major classes of antibiotics currently in use (Table 2-1). While many 

antibiotics are of synthetic origin, the majority of antibiotic classes are still derived 

naturally from bacteria or fungi products27. Typically, human medicine prescribes last-

generation antibiotics such as carbapenems, cephalosporins and fluoroquinolones 

while 'older' antibiotics such as penicillins, sulphonamides and tetracyclines tend to 

be used in animal production57.  
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Table 2-1. Ten major classes of antibiotics currently in use27. 

Synthetic Example Natural Example 

1) Sulfonamides Sulfamethoxazole 4) β-lactam   

2) Fluoroquinolones Ciprofloxacin           – penicillins Penicillin G 

3) Oxazolidinones Linezolid           – cephalosporins Cephalosporin C 

            – carbapenems Meropenem 

 5) Aminoglycosides Kanamycin A 

6) Macrolides Erythromycin A 

7) Tetracyclines Tetracycline 

8) Glycopeptides Vancomycin 

9) Lipopeptides Colistin 

10) Rifamyacins Rifamyacin SV 
 

Antibiotics generally target bacteria via a few well-defined pathways such as 

disrupting cell membranes or inhibiting protein synthesis (Figure 2-2), with specifics 

varying depending on the drug27. 

 

Figure 2-2. Antibiotic targets and mechanisms of resistance58. 

Bacteria can become resistant to antibiotics through multiple and complex 

mechanisms such as inactivating the drug by enzymatic degradation or expressing 

efflux pumps to lower the antibiotic concentration in the cell27 (Figure 2-2). Often, 

resistance towards an antibiotic is a combination of several mechanisms as observed 

for tetracycline resistance where antibiotic modification, efflux mechanisms and target 
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modification can occur1. Some resistance genes do not only confer resistance 

against antibiotics, but also against other selective agents such as metals and 

biocides48.  

2.3 Exposure and spread of antibiotic resistance 

Antibiotic resistant bacteria can infect individuals by many pathways, but three 

appear to be most important – (i) ARBs can be selected for by antibiotic consumption 

in the gut itself, ARBs can disseminate via (ii) exposed food and, or (iii) water21 

(Figure 2-3). In LMICs where sewage treatment is insufficient or non-existing, the 

latter two represent pathways of spread and exposure for AR, both rooted in 

contaminated water supplies21. However, even in HICs, conventional wastewater 

treatment plants (WWTPs) cannot always effectively reduce the burden of antibiotics, 

ARBs and ARGs19,59–62. Conventional wastewater treatment set-ups vary greatly but 

typically include pre-treatment (screening of large solids), primary treatment 

(settlement of suspended solids), secondary treatment (biological treatment through 

bacterial breakdown such as activated sludge) and sometimes tertiary treatment 

(such as filter membranes or disinfection by UV light)63.  

Humans and animals excrete a large fraction of consumed antibiotics in their 

biologically active form via urine and faeces64–66. Despite major advancements, 

biological WWTPs only moderately (50-80%) remove these drugs18. Depending on 

the WWTP process applied, Hiller et al., 2019 observed a vast range in removal 

efficiencies for tetracycline resistant faecal coliforms, ranging from 0.6 to 5.4 log 

removal. Log removals measure the ability of a treatment process to remove 

microorganisms68. A log removal of 1 and 2 are equivalent to 90% and 99% removal 

of the microorganisms at a specific treatment step, respectively. Narciso-da-Rocha et 

al. (2018) observed secondary treatment to reduce ARG abundance by 2 log units 

but no further significant reductions were recorded after the subsequent UV 

disinfection stage. The same study found UV treatment to reduce viable culturable 

Enterobacteriaceae by 2 log units69. Quintela-Baluja et al. (2019) showed that while 

concentrations of most ARG classes significantly reduced from the influent to 

effluent, WWTPs did not significantly reduce ARG richness and numbers of ARGs 

per genome. Using genetic source tracking, they found ARGs associated with human 

faecal pollution often directly passing through the WWTP and discharge in the 

environment.  
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Only a part of the ARBs released in WWTP effluent are able to cause diseases in 

humans71. However, their contribution to the environmental resistome and 

subsequently to the emergence of newly resistant pathogenic bacteria should not be 

neglected71.  

Polluted water sources can pose an AR exposure risk to humans, for example by 

swimming in impacted surface waters72. To holistically assess AR exposure, water 

and sanitation sources need to be considered together with other important factors 

such as hospital visits, international travel, meat consumption, agriculture and 

aquaculture36,71 (Figure 2-3). 

 

Figure 2-3. Antibiotic resistant bacteria can easily spread between people, animals, and the 
environment1. 

2.4 Antibiotic consumption and resistance in LMICs 

Between 2000 to 2015, global antibiotic consumption per capita rose by 39% with the 

majority of this increase explained by growing demands in LMICs (Figure 2-4A)73. 

While antibiotic consumption rates in LMICs are converging to HIC standards, they 

have not yet reached them, despite the higher bacterial disease burden in LMICs73. 

Even though total antibiotic consumption has increased significantly in LMICs (114% 

from 2000 to 2015) (Figure 2-4B)73, access to these life-saving drugs is not yet 

warranted for all income segments of the population20. 
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Figure 2-4. Comparison of the change in global antibiotic consumption from 2000 to 2015 as a function 
of country income classification, considering antibiotic consumption rate in defined daily doses (DDDs) 
per 1,000 inhabitants per day (A) and total antibiotic consumption in DDDs (B)73. 

Common challenges in LMICs are over-the-counter sales of antibiotics and self-

medication20. This, combined with weak healthcare systems and unsafe or poorly 

maintained sanitation systems, has contributed to a disproportionally high prevalence 

of resistant pathogens in LMICs20 (Figure 2-5). It is alarming that second- and third-

line antibiotics required to treat these resistant bacteria are not widely available in 

LMICs, where more than three quarter of the world population live20,27. 

 

Figure 2-5. Cross-country comparison of carbapenem resistance patterns in blood and cerebrospinal 
fluid isolates for WHO priority pathogens A. baumanii, K. pneumonia and E. coli 74. Country order based 
on 2017 gross domestic product (GDP) per capita75. Data source: The Center for Disease Dynamics 
Economics & Policy, 2019. Data for India, China, Malaysia, UK, Netherlands and US from 2017. Data 
for US and South Africa from 2016. Data for Mexico for K. pneumonia and E. coli from 2015 and for A. 
baumanii from 2014. 
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2.5 Antibiotic resistance and sanitation in Southeast Asia – Malaysia 

2.5.1 Situation in Southeast Asia 

A WHO conducted risk assessment found SE Asia to be one of the most at-risk parts 

of the world for the emergence and spread of AR25. For this thesis, SE Asia is 

defined to include Brunei, Cambodia, Indonesia, Laos, Malaysia, Myanmar, 

Philippines, Singapore, Thailand, Timor-Leste and Vietnam (Figure 2-6a)77.  

Within SE Asia, wealth, cultural traditions, sanitation levels and AR prevalence vary 

greatly across and within countries77. Where data is available, infection rates in 

adults and children with ESBL producing bacteria vary from 0 − 20% (Brunei) to 

20 − 40% (Malaysia, Thailand, Philippines) to 60 − 80% (Myanmar and Vietnam)78. 

ESBL bacteria produce an extended spectrum enzyme that breaks down the majority 

of β-lactam antibiotics such as penicillin78. Infections with ESBL bacteria are treated 

with the remaining β-lactam antibiotics, called carbapenems78. High rates of mortality 

occur when pathogens become resistant to these last-resort antibiotics78 (Figure 2-5).  

Available antibiotic consumption rates in 2015, based on imported and produced 

data, differ from lowest defined daily doses (DDDs) per 1,000 inhabitants in Brunei, 

Philippines and Indonesia (6 − 8) to increased rates in Malaysia, Singapore and 

Thailand (12 − 18) and highest rates observed for Vietnam (31)79. The gross 

domestic product (GDP) per capita correlates with the percentage of people 

connected to the sewer network (Figure 2-6b). While almost all sewage in the high-

income countries Brunei and Singapore is treated in WWTPs, sewer connection rates 

are much lower in the upper middle-income countries (Malaysia, Thailand) and do 

not commonly exist in the lower middle-income countries (Cambodia, Indonesia, 

Laos, Myanmar, Philippines, Timor- Leste, Vietnam)80 (Figure 2-6b). Even within a 

country, sanitation levels can vary greatly depending on the region. For instance, 

while in urban Malaysia, 42% of the population are connected to sewers, this is only 

the case for 12% of the rural population80. 
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Figure 2-6a. Map of Southeast Asia (created with mapchart.net). b: Relationship between population 
percentages connected to sewers (combined rural and urban, data for 2015) and gross domestic product 
(GDP) per capita (data for 2015) in Southeast Asia. Data source: WHO-UNICEF, 2017; World Bank, 
2019.  

2.5.2 Antibiotic resistance in Malaysia  

Malaysia, the study site, has one of the strongest, fastest-growing economies in SE 

Asia (Table 2-2)81. Increased wealth has allowed more Malaysians to access 

healthcare, including antibiotics. A national study in 2014 found that antibiotics were 

prescribed in 21% of patient encounters, although 46% of these were for upper 

respiratory tract viral infections, where antibiotics are often not suitable82. 

In 2000, a National Surveillance of Antibiotic Resistance (NSAR) programme was 

initiated to monitor AR bacteria in hospitals83. Particular local concern are increasing 

ESBL producing Enterobacteriaceaea and carbapenem resistant pathogens84. The 

NSAR programme recorded an increase in Acinetobacter baumanii resistant to 

carbapenem from 49% in 2008 to 61% in 201784. Carbapenem-resistant Klebsiella 

pneumoniaea rates have increased from 0.3% in 2011 to 2.9% in 201784. Spreading 

AR means that infectious diseases are more difficult to manage, ultimately potentially 

resulting in more morbidity and mortality in Malaysia85. 

In 2015, the World Health Assembly endorsed its global action plan on antimicrobial 

resistance (including AR11). This led Malaysia to establish their Malaysian Action 

Plan on antimicrobial resistance (MyAP-AMR) in 2017. The MyAP-AMR follows a 

One Health approach, combining human, animal and environmental health 

interventions83.  
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Table 2-2. Country information for Malaysia. 

Area 330,000 km2 86 

Population 32 million 87 

Ethnic groups 69% Bumniputera or indigenous (Malay, Orang Asli and other bumiputera), 

23% Chinese, 7% Indian, 1% others 87 

Languages Malay (official), Chinese, Tamil, English 86 

Religions 61% Islam (official, Government of Malaysia, 2010), 20% Buddhism, 9% 

Christianity, 6% Hinduism, 4% others 89 

Key industries Manufacturing (electric appliances), agriculture and forestry (natural rubber, 

palm oil, and timber), and mining (tin, crude oil, and LNG) 86 

Gross domestic 

product (GDP) per 

capita (2018) 

11,239 $ 75 

 

2.5.3 Sanitation and surface water quality in Malaysia 

Waste treatment is not sufficiently developed in Malaysia to remove residues of 

antibiotics, ARGs and ARBs effectively80,90. National data from 2017 show 79% of the 

Malaysian population connected to sewers with 20% serviced by septic tanks and 

<1% relying on latrines and other91. Improvement to secondary (biological) treatment 

has taken place in some areas90 but many locations still rely on septic tanks. Despite 

substantial investments and increasing awareness, surface water pollution, mostly 

through sewage, is still a major problem in Malaysia92 (Figure 2-7). This is critical as 

surface waters supply 98% of fresh water for the country92.  

Malaysia has an established, wide-ranging river water quality program93. In 2015 

(latest publicly available dataset), 477 rivers were monitored at regular intervals 

(usually every 1-3 months) for standard water quality parameters such as dissolved 

oxygen (DO), temperature, but also metal and coliform levels93,94.  

River contamination data is assessed by calculating a Water Quality Index (WQI) to 

define suitable terms of water use following the National Water Quality Standards for 

Malaysia (NWQS). The WQI incorporates parameter values for DO, biochemical 

oxygen demand (BOD), chemical oxygen demand (COD), ammonia (NH3-N), 

suspended solids and pH92. From 2005 to 2015, water quality based on the WQI sub-

index BOD decreased substantially in Malaysian rivers while the overall WQI 

classification ratio remained relatively stable (Figure 2-8)94.  
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Figure 2-7. Two children standing on the edge of a plank walkway overlooking a garbage- and debris-
strewn area of water in Borneo, Malaysia30. 

Similarly to environmental monitoring programs in other countries, the Malaysian river 

quality programme does not measure any AR parameters94. Despite the NSAR 

programme documenting the increase of AR in Malaysian hospitals, almost no 

research has been conducted on the occurrence and spread of AR in surface water. 

Only a few Malaysian studies have monitored selected ARGs, ARBs or antibiotics in 

surface waters79,95–97, but no study has yet monitored combined seasonal and spatial 

effects for ARGs, ARBs and antibiotic concentrations and mass loadings.  

 

Figure 2-8. Change of river water quality in Malaysia from 2005 to 2015 based on the water quality 
index (WQI) index (a) and with a focus on the biochemical oxygen demand (BOD) sub-index (b) for over 
450 annually monitored rivers. Data source: Department of Environment, 2015. 

2.6 Monitoring antibiotic resistance in surface waters  

Systematic surveillance of antibiotic use and antibiotic resistance is required to tackle 

AR through a One Health approach11,98. While long-standing clinical surveillance 

exists for AR in several countries9, including Malaysia84, environmental monitoring is 
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still in its infancy28. Comprehensive environmental AR exposure assessments are 

required to support holistic approaches to reducing AR. Various AR endpoints can be 

monitored, each with its advantages and disadvantages19,36. Ultimately, the choice of 

markers and sampling sites should be chosen based on the surveillance 

objective28,71.  

Given the limited available environmental AR data in LMICs27, results need to be 

reported in a consistent way to allow comparison to other studies and potential 

extrapolation to regions with no data. Unfortunately, most studies only report 

statistical significance (P values) instead of calculating more meaningful statistics 

such as standardised effect sizes. Dimensionless effect sizes describe the size of a 

difference and allow to compare studies from different settings with different 

variables99. Despite the popularity of effect sizes in meta-analysis and psychological 

studies, they are not yet commonly used in AR/water quality monitoring studies. 

In the following, the most relevant endpoints for AR monitoring are discussed with a 

focus on their feasibility for LMICs. 

2.6.1 Antibiotic residuals and selective agents 

Antibiotic concentrations in surface water are generally low with weak or no effects 

observed for AR selection36,100. Examples for highly polluted sites can be surface 

waters receiving effluents of pharmaceutical manufacturing companies. High drug 

releases in rivers have been linked to increased ARG and MGE levels101,102. 

Probably one of the most worst-case scenarios for environmental antibiotic pollution 

was observed by Larsson et al. (2007). They analysed effluents of a WWTP in India 

serving over 90 bulk drug manufacturers and detected several antibiotics in high 

concentrations over 100 µg/L with very high ciprofloxacin levels ranging up to 

31 mg/L.  

Typically, antibiotic concentrations in surface waters range from non-detectable to 

ng/L and lower µg/L figures, but can vary vastly depending on the region79,104. A 

review of antibiotics in surface water of East and SE Asia found antibiotic 

concentrations in surface waters to range from <1 ng/L to hundreds of µg/L with 

median concentrations from 10 to 100 ng/L79. The same study found wider ranges 

and higher maximum concentrations for certain antibiotics in surface water of East 

Asian countries such as China and South Korea than in the SE Asian nations such 

as Malaysia and the Philippines79. A meta-analysis observed average 
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sulfamethoxazole levels in surface waters to be 100-times higher in Africa 

(4.7 ± 8.9 µg/ L) than in Europe (41 ± 87 ng/ L)104. Nevertheless, while surface water 

antibiotic levels are usually augmented in LMICs in comparison to HIC, other factors 

such as water quality and sanitation levels are suggested to play more critical roles in 

reducing AR burden56,100,105.  

Other aspects, especially relevant for LMICs, are the cost and expertise required to 

maintain and operate analytical instruments for antibiotic measurements such as 

liquid chromatography-tandem mass spectrometry (LC MS/MS)36. Once antibiotic 

concentrations have been measured it can also be challenging to understand the 

environmental risk associated with the observed levels. There have been attempts to 

define threshold levels above which an antibiotic might exert selection for resistant 

bacteria106,107. These 'predicted no effect concentrations' (PNECs) can help to 

classify pollution levels, but ultimately remain estimates. For instance, PNECs do not 

account for additive effects of antibiotics and other selective agents such as metals 

or biocides. Another challenge is that there is no environmental guidance available 

on which antibiotics to target, except for the clinically orientated WHO ranking of 

critically important antimicrobials for human medicine36,108.  

Where antibiotic usage data is difficult to obtain in a LMICs context109, surface water 

concentration data can help to estimate drug consumption rates. However, rapidly 

degradable antibiotics, such as many β-lactams, might not be detected 

representatively and could skew the observations110–112.  

2.6.2 Culture-based techniques 

Growing bacteria on selective antibiotic agar allows quantification of viable ARBs with 

well-known traits36. AR monitoring in clinical isolates is well established and 

standardised, but specific methods for environmental samples were never 

developed, rather adapted113.  

Recently, the WHO proposed ESBL producing E. coli as an indicator organism for 

global AR surveillance in humans, animals and the environment114. The advantages 

of monitoring this organism are that it 

(1) is based on established and accessible methods in HICs and LMICs,  

(2) is included in the WHO list of antibiotic resistant 'priority pathogens' posing 

the greatest health threat74,  
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(3) can describe AR levels comparatively for food, clinical and environmental 

samples and  

(4) allows quantifying variations between different regions in HICs and 

LMICs27.  

ESBL E. coli monitoring as part of the WHO Tricycle Project has now been pilot-

tested (2018-2020) in six LMICs (Ghana, Indonesia, Madagascar, Malaysia, Pakistan 

and Senegal) with plans to further expand the projects to three others (India, Jordan 

and Nepal)115. For this, training workshops and technical assistance are provided to 

the countries willing to implement ESBL E. coli monitoring115. 

However, limitations of using culture based indicator organisms for AR monitoring are 

that (1) a single indicator organism might not reliably represent other enteric 

pathogens116, (2) complex microbial community compositions are not assessed, and 

(3) culturing misses the majority of (especially unculturable environmental) 

bacteria36,117. For the latter, depending on the environment, less than 1-10% of total 

bacteria present might be culturable118,119.  

2.6.3 Culture-independent techniques 

Culture-independent, nucleic-acid-based approaches (such as DNA sequencing or 

quantitative PCR (qPCR)) allow to monitor ARBs, ARGs and MGEs in the 

environment27. While these costly methods are often not suitable for routine 

monitoring in LMICs, they provide valuable insights in environmental resistomes, 

which cannot be obtained via culture-based techniques36. Culture-independent 

techniques have allowed the characterisation of environmental resistomes in many 

diverse samples, both within LMICs and HICs27,120,121. ARGs and MGEs are typically 

monitored by qPCR (conventional qPCR or high-throughput qPCR (Ht-qPCR)), but 

metagenomic DNA sequencing can also be applied.  

With sequencing costs constantly falling, metagenomic sequencing is becoming 

more widely accessible122. DNA sequencing allows to profile microbial 

communities70, including thousands of ARGs and MGEs121, without prior target 

selection. The challenge of correctly annotating ARGs from sequencing data 

remains, but the robustness of publicly available ARG databases such as 

Comprehensive Antibiotic Resistance Gene Database (CARD)123 and the Structured 

Antibiotic Resistance Gene (SARG) database124 is improving36. Another challenge is 

to comprehensively analyse the increasing volumes of datasets to obtain global, 
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meaningful insights about AR. For this, machine and deep learning methods are 

being developed125 together with tools to rank the risk of ARGs for metagenomes126. 

Field-deployable sequencing devices such as Nanopore127 could provide widely 

accessible AR analysis for LMICs100,128,129, but these devices are currently still too 

cost-intensive and can be experimentally challenging27.  

In comparison to sequencing, qPCR is fairly accessible and provides a more 

quantitative and sensitive assay36. Previously, only a small fraction of ARGs could be 

targeted in environmental samples, but increasing levels of whole genome 

sequences now provides a vast array of ARG targets from databases130. Ht-qPCR 

arrays allow the simultaneous quantification of hundreds of ARGs, while providing 

lower detection limits than sequencing approaches. Waseem et al. (2019) estimated 

ARG detection limits for Ht-qPCR in the range of 10-4 ARGs/16S rRNA, while the 

same detection limit for sequencing would require at least 108 reads during 

metagenomic analysis.  

While analysing environmental samples with Ht-qPCR provides a quick overview of 

the presence/absence and quantity of several hundreds of ARGs and MGEs, the 

approach is expensive and typically, less accurate than performing individual qPCR 

assays. The cost of analysing one sample with Ht-qPCR depends on the amount of 

genes included, but typically ranges from £100 to £300 per sample131. Only a few 

specialised research institutions and companies offer Ht-qPCR analysis to quantify 

ARGs and MGEs in environmental samples. For LMICs (and most HICs), one 

strategy can be to firstly analyse representative samples of selected 

environments/regions with Ht-qPCR to characterise the resistome and then perform 

follow up monitoring studies on a few selected ARGs/MGEs with individual qPCRs.  

However, both approaches, sequencing and qPCR, cannot easily link ARGs and 

MGEs to their hosts in complex environmental samples. Developments of epicPCR 

represent a step forward, but the methodology cannot yet differentiate between many 

genera and species28,132. In addition, it can be difficult to distinguish if the detected 

ARGs and MGEs are present in either dead or live cells133. Some studies have 

proposed to link microbiome data from DNA sequencing with (quantitative) ARG data 

to study environmental AR134,135. However, next-generation sequencing (NGS) data 

is inherently compositional, providing relative abundance information136. This makes 

it difficult to apply statistical tools to correlate the presence of ARBs with 

concentrations of ARGs137. 
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It remains challenging to reliably assess the risk associated with measured ARG and 

MGE values as defined targets and threshold concentrations are missing. ARGs 

encoding resistance to clinically important antibiotics could be prioritised, but these 

highly relevant genes are often rare in the environment and might not always be 

detectable with current methods36. Analysing the sum of all analysed ARGs can 

inform about selection pressures, but might be dominated by a few highly abundant 

ARGs, not capturing differences in more clinically relevant genes28. 

Alternatively, MGEs have been proposed as AR markers as they can carry a large 

number of ARGs. In particular, the clinically relevant class 1 integron (int1) is 

promising138. However, although class 1 integron is ubiquitous in human and animal 

microbiomes, it is not associated with particular bacteria or pathogens, or specific to 

AR28. 

In conclusion, each AR marker has its advantages and disadvantages but where 

feasible, monitoring various endpoints can provide the most complete AR 

assessment19,36. For LMICs, routine surface water monitoring for ARBs such as 

ESBL E. coli can be a useful, easy to apply and cost-effective approach to capture 

environmental AR levels. However, where equipment and expertise are available, 

additional targeted in-depth analyses of environmental resistomes with culture-

independent techniques such as qPCR or DNA sequencing provide valuable data to 

better understand AR burden19.  

2.7 Modelling antibiotic resistance in watersheds 

2.7.1 Status of antibiotic resistance modelling  

Next to field monitoring and laboratory experiments, modelling can provide an 

important tool to identify and manage the risk of AR139,140. Models can help to 

understand and predict the burden of AR by characterising influencing factors and 

validating intervention methods29. In addition, AR models can elucidate knowledge 

gaps and direct research to identify missing parameters and processes in the 

modelled system29. 

While there has been a growing interest in modelling AR141, the majority of models 

only focus on human related AR transmission in either hospital or community 

settings142. However, to address the One Health dimension of AR143, it is essential to 

also model transmission routes within and between populations (microbiota, animal 

and human populations) and across systems (communities, farms, rivers) (Figure 
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2-9). Considering the delayed consideration of monitoring AR in the environment, it is 

not surprising that environmental AR modelling is still rudimentary142. Birkegård et al. 

(2018) found that out of 38 assessed mathematical AR models, only four considered 

the environment, with one model describing AR bacteria growth in slurry144 and three 

models considering AR spread and survival in rivers145–147.  

 

Figure 2-9. Characteristics of AR models (based on 29,142,148). 

Current AR models vary in structure and complexity, but often there is little 

justification given for the chosen model type, dynamic behaviour state or population 

mixing assumption (Figure 2-9)29. In addition, the majority of models ignore the 

uncertainty and stochasticity in the emergence and fate of AR, for instance modelling 

one single strain of a pathogen in one unit assuming homogenous mixing29. While 

the difficulty to model the complexity of AR is acknowledged, especially in view of 

knowledge gaps, more research initiatives should aim to consider external factors 

and multifaceted interactions in their models29. 

When single strains of pathogens are modelled, current studies often concentrate on 

diseases with long-established resistance, while few studies address recent rises in 

resistance in new pathogens74,142. For instance, Ramsay et al. (2018) found that only 

two out of 81 AR models examined the urgent threat of ESBL 

Enterobacteriaceae149,150 with no model studying carbapenem-resistant 

Enterobacteriaceae.  
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Another aspect is that current AR models mostly assess 'micro' scale interventions 

such as the impact of different drug regimens or infection control strategies (e.g. 

isolation, hand hygiene), but rarely consider 'macro' scale interventions such as 

improving waste treatment or sanitation142. And while recent studies have linked 

climate change to potentially increase AR levels151,152, no AR model has yet 

considered this environmental factor, except in general and non-specific terms142.  

In many studies, AR models are based on hypothetical situations in hospitals or 

communities with no supporting data29. Niewiadomska et al. (2019) found in their 

review only 43% of mathematical AR models calibrated against data with only 14% 

validating against independent datasets. Validation is an essential component of 

model development to reduce the risk of inaccurate model outcomes and 

conclusions29. The absence of data-based calibration and validation in many AR 

models could be due to a lack of sufficient data29. Data scarcity for AR models is a 

major concern for environmental studies, especially in LMICs with comprehensive AR 

monitoring being resource- and time-intensive142.  

2.7.2 Antibiotic resistance river models 

Operational watershed models cover a wide array of water quality parameters and 

pollutants for river management (see 2.7.3)153. However, none of these off-the-shelf 

watershed models currently includes an AR component. To date, only a few AR 

research models have been published for specific locations, as summarized 

below145,146,154,155. 

Lawrence et al. (2010) developed one of the first mathematical models to describe 

ARB concentrations in rivers. Their relatively simple, hypothetical approach focussed 

on modelling the influx of bacteria from the shore (such as from WWTPs), transfer 

and loss of ARGs, and the river carrying capacity.  

In contrast to this purely theoretical model, Hellweger et al. (2011, 2013) developed 

and applied a tetracycline resistance model to the Poudre River in Colorado. Their 

more complex model included variables for antibiotics, metal toxicants, susceptible 

and resistant bacteria, and organic matter. They calibrated their model with field data 

for tetracycline, ARG and ARB concentrations at five locations along the river. The 

model incorporated a basic streamflow element and accounted for some point 

(WWTPs, agriculture and livestock) and non-point pollution sources (based on land-



Modelling antibiotic resistance in watersheds 

22 

use). Depending on the assumptions, the model was able to explain some observed 

levels of tetracycline resistant bacteria in the Poudre River.  

Gothwal and Thatikonda (2017) developed and applied a model for the transport of 

fluoroquinolone and its resistant bacteria for the Musi River in India. They accounted 

for the same variables as Hellweger et al. (2011, 2013), but applied the model to a 

LMIC setting to predict pollution conditions under different management 

interventions. They calibrated their model with a homogenous dataset for 

fluoroquinolone and fluoroquinolone resistant bacteria concentrations at 16 points 

along the river.  

Such studies are promising but lack elements of comprehensive watershed modelling 

to describe water quantity and quality. The section below describes the mechanistic 

of watershed models and which models could be considered to incorporate an AR 

element to describe AR fate and exposure.  

2.7.3 Watershed models 

A watershed model quantifies the fluxes and storage of water within a catchment. 

Such models are typically based on the water cycle (Figure 2-10) and help to 

understand, predict and manage water resources156. 

The water cycle describes the transfer of water from precipitation to surface water 

and groundwater, to storage and runoff, and ultimately back to the atmosphere 

through evaporation157. The water mass balance describes these processes in a 

simplified form, forming the basis of watershed models (Equation 2-1).  

Equation 2-1. Water mass balance. 

𝛥𝑆 = 𝑃 − 𝐸 − 𝑄 

𝛥𝑆:  Change in storage of soil/groundwater  
𝑃:  Precipitation 
𝐸:  Total evaporation 
𝑄:  Discharge 
 

Based on the spatial discretisation of the catchment, watershed models can be 

grouped into lumped, semi-distributed and distributed (Table 2-3). Semi-distributed 

models represent important features in catchments while being less data intense 

than distributed models (Figure 2-10b). One of the most comprehensive semi-

distributed watershed models is the freely available Hydrological Simulation Program 

– FORTRAN (HSPF).  
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Figure 2-10. a) The water cycle157. b) Distributed, semi-distributed and lumped modelling of a 
catchment158. c) Three dimensions (longitudinal, vertical and lateral) of the stream corridor157.  

HSPF is one of only a very few models which enables the integrated simulation of 

land and soil contamination runoff processes with in-stream hydraulic and sediment-

chemical interactions159. HSPF was developed by US Environmental Protection 

Agency (EPA) and is incorporated into the multipurpose environmental analysis 

system Better Assessment Science Integrating Point and Nonpoint Sources 

(BASINS)160. HSPF can simulate nonpoint and point-source pollutant loadings at any 

point in the watershed161. Runoff qualities are calculated with both simple 

relationships (such as empirical build up/wash off and constant concentrations) and 

detailed soil process options (such as leaching, sorption, and soil nutrient 

transformations)162. HSPF simulates organic chemical transfer and reaction 

processes such as biodegradation, photolysis, oxidation, hydrolysis, volatilization and 

sorption 162. Stream nutrient processes cover DO, BOD, nitrogen and phosphorus 

reactions, pH and microorganisms162. HSPF can simulate detailed interactions 

between 15 or more water quality constituents within a river reach159. Despite its 

widespread use and applicability163–166, an environmental AR component is not yet 

available for HSPF or any other watershed model.  
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Table 2-3. Comparison of the basic structure for rainfall-runoff models167. 

 Lumped Semi-Distributed Distributed 

Method 

Spatial variability is 

disregarded, entire 

catchment is modelled as 

one unit 

Series of lumped 

homogenous units, with 

semi-distributed 

parameters 

Spatial variability is 

accounted for, for example 

through the use of a grid 

Inputs 
Spatially averaged data 

for the catchment 

Spatially averaged for 

the units 
Data specified by grid cell 

Strengths 

Fast computational time, 

good at simulating 

average conditions 

Represents the 

important features in 

catchment 

Represents hydrological 

processes, often using 

physically based equations 

Weaknesses 

A lot of assumptions, loss 

of spatial resolution, not 

ideal for large areas 

Averages data into sub-

catchment areas, loss of 

spatial resolution 

Data intense, high 

computational 

requirements 

Examples 
Empirical and conceptual 

models, machine learning 

Conceptual and some 

physical models, 

TOPMODEL, SWAT, 

HSPF 

Physically distributed 

models, MIKESHE, 

VELMA 

 

2.8 Conclusion 

The spread of AR pathogens is a global threat to human, animal, and environmental 

health. While the burden of AR has been studied intensely in clinical settings, the 

environmental dimension has long been neglected. Environmental AR is particularly 

a problem in LMICs, where insufficiently treated waste pollutes surface waters with 

residues of antibiotics, ARGs and ARBs. Contaminated waters enrich the 

environmental resistome and can pose a health risk to locals using surface waters for 

fishing, irrigation or recreational use. 

SE Asia has been proposed as a hotspot for emerging diseases and AR spread. 

Clinical β-Lactam resistance is spreading in many countries, including in Malaysia. 

Malaysia is a middle-income country with reported over- and misuse of antibiotics 

while wastewater treatment cannot sufficiently remove residues of AR. Despite these 

alarming factors, comprehensive surface water AR monitoring has not yet been 

performed in Malaysia or many other SE Asian countries. Providing a comprehensive 

picture of environmental exposure could provide a strong starting point for One 

Health as part of the health protection system for Malaysia. Such a One Health 

approach to AR is crucial to reduce increasing morbidity and mortality caused by 

infections with AR pathogens in Malaysia and elsewhere. 

Most AR monitoring data sets are only available for HICs as the required field work is 

resource- and time-intensive. In addition, agreements and guidance are missing on 
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which AR parameters to monitor with which methods. Many LMICs, including 

Malaysia, operate national river water quality programmes, but these do not include 

AR parameters. Where research studies on environmental AR are available, limited 

statistical analyses often hinder the comparison and extrapolation of findings to other 

studies and/or settings, respectively.  

Existing watershed models such as HSPF could help to pinpoint AR hotspots when 

only limited/no environmental AR data are available. However, available river models 

do not include an AR element and are often not particularly well suited for LMICs.  

AR models are still in their infancy and are generally only used within research 

settings. Challenges include establishing a consensus on an appropriate model 

structure, identifying which processes, and in how much detail need to be included, 

and how to quantify uncertainties in predictions.  

Therefore, to address AR in Malaysia, SE Asia and LMICs in general, new AR 

monitoring data is required to develop predictive river water AR models. These AR 

models can then help to understand and predict the burden of AR by characterising 

influencing factors and validation intervention methods.   
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Chapter 3. Developing surrogate markers for predicting 

antibiotic resistance 'hot spots' in rivers where limited 

data are available 

3.1 Introduction 

Increasing resistance in microorganisms to antibiotics and other drugs poses a global 

health threat10. When a pathogen becomes resistant to critical drugs, formerly easy-

to-treat infections can become lethal168,169. Consequently, scientists and policy 

makers must better understand drivers of AR to reduce its global spread. The 

number of peer-reviewed AR papers has quadrupled during the last ten years (title or 

abstract containing 'antibiotic resistance' web of science from 2010 to 2020) with 

more than 9,000 papers published in 2020 alone. However, our understanding of 

environmental AR spread lags behind other contexts36. When insufficiently treated 

wastewater enters rivers, residues of antibiotics, ARBs, and ARGs can radiate 

through the environment, potentially posing an exposure risk170,171. However, 

mitigating environmental AR spread is hindered by many factors, including: (1) 

inadequate data to make decisions about environmental AR exposures; (2) the 

complexity and diversity of environmental matrices; (3) conflicting definitions of AR 

and inconsistency in measuring methods; (4) reliance on overly expensive detection 

methods; (5) limited agreement on AR thresholds of possible concern; and (6) a 

limited understanding of how environmental AR levels translate to human health 

risk28.  

Limited data and expensive AR detection methods are especially problematic in 

LMICs, particularly comparing places and times, and identifying sites of greatest 

concern172. This is partly because most studies are more academic rather than 

practical, but also because researchers overly focus on testing statistical significance 

(P values) to report spatial or temporal differences. A lower P value is often 

interpreted as meaning a bigger difference between two settings, but statistical 

significance only means that it is unlikely for the null hypothesis to be true (such as 

H0 = no difference in antibiotic concentration between up- and downstream river 

locations)173, which often has limited value in quantifying the scale of differences.  

In contrast to P values, we feel 'standardised dimensionless effect sizes' better 

describe the size of differences and allow comparison of studies from different 
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settings with different variables99. Effect sizes are easy to calculate and, unlike P 

values, provide a comparison independent of sample size99. Surprisingly, despite the 

popularity of effect size in meta-analysis and psychological studies, they have not 

been used in AR/water quality studies. We argue that to effectively interpret and 

compare AR levels, both statistical significance (P value) and substantive 

significance (standardised effect size with confidence intervals) should be reported99.  

Increasing the informative value of monitoring data is especially critical in LMICs. 

While antibiotic use per person is increasing in LMICs to HIC rates, sewage 

treatment often lags behind27,73,80. SE Asia with its rapid economic development has 

been proposed as an epicentre for emerging infectious diseases and AR22–24. In 

particular, ESBL producing and carbapenem resistant pathogens pose major health 

threats in the region78,174.  

Despite LMICs carrying a higher burden of AR, including Malaysia, environmental AR 

surveillance more often takes place in HICs27. As such, there is a chronic shortage of 

data in most LMICs, especially the relative susceptibility of local populations to the 

effects of AR due to limited accurate health surveillance data172,175. AR transmission 

models have been proposed to estimate the risk of AR 29, but environmental AR 

modelling, which might help fill in data gaps in LMICs, lags far behind142. While 

surface water quality models have existed for decades 176, few attempts have been 

made to model AR spread in watersheds 145,154,155, often hindered by limited 

knowledge of AR fate processes in the environment, and missing AR and-or 

hydrological calibration/validation data.  

The aim of work within this chapter is to identify 'simple' easy-to-measure water 

quality surrogates that would aid monitoring and modelling of AR in locations with 

limited data. For this, we examined the Skudai river catchment in Malaysia, using 

simple AR culturing methods and routine water quality markers in parallel to more 

sophisticated methods. Furthermore, we show the value of effect sizes for 

environmental AR studies, which better account for spatial, seasonal and dilution 

effects, and improve comparability of monitoring studies in LMICs and HICs. 

3.2 Material and methods 

3.2.1 Catchment description 

The Skudai river catchment in southern Malaysia (total drainage area 288 km2 166, 

see Figure 3-1) is comprised of urban/developed, agriculture (80% oil palm, 20% 
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rubber plantations), and forest land in roughly equal proportions177. The Skudai 

catchment lays within the Johor Bahru district (1,865 km2 with 1.4 million inhabitants 

178).  

 

Figure 3-1. Skudai catchment in Malaysia with sampling points (102◦59’54.19” E and 104◦11’8.54” E 
longitude and 1◦56’31.67” N and 1◦22’41.16” N latitude). 

Similar to many LMIC settings, sewage treatment in the Skudai catchment is 

inconsistent, sometimes with poorly defined discharge locations97,179. To our 

knowledge, no major pharmaceutical production facilities are located in the 

catchment179.  

The main Skudai river (42.8 km) passes rural and urban areas before it discharges 

into the sea (tidal influences downstream of S7). The Skudai has several tributaries, 

including the mostly rural Senai (11.8 km) and urbanized Melana (18.7 km)166. 

Malaysia has a humid tropical climate with two monsoon seasons, the relatively dry 

Southwest Monsoon from May to September and the wetter Northeast Monsoon from 

November to March, but substantial rainfall also occurs in the transitional 

periods180,181.  

3.2.2 Sample collection and processing  

River water samples were collected from eight sampling points in the Skudai 

catchment (Figure 3-2, Appendix Table A-1) across four seasonal sampling 

campaigns: two in March 2018 (trips I,II) in the 'wet season' and two in July 2018 

(trips III, IV) during the 'dry season'. Eight sampling points were chosen based on 
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land use and preliminary sampling data from 15 sites (results not shown), and 

included six locations on the Skudai itself (S1, S2, S5, S6, S7 and S8 during trips I-

IV) and two sites on Senai and Melana tributaries (Se1 and M5; sampled during trip I, 

III, IV), respectively. This campaign resulted in a total of 30 sample sites from which 

technical triplicates were collected. 

 

Figure 3-2. Skudai catchment photos showing Skudai river (a, b), a drain leading into Skudai river (c) 
and river water sampling (d).  

Sampling events always were conducted over a single day in the morning, from up- 

to downstream, only at low tide, and on days when rainfall had not occurred within 

24 h. Each sampling location was at a bridge, which allowed water collection from 

mid-river. Samples were collected in a pre-rinsed clean bucket (on a rope), waiting 2 

min between taking each replicate. Sample water was stored in autoclaved glass 

bottles on ice in the dark (3 x 1 L, except 4 x 1L for S1 to assure sufficient DNA yield 

for downstream processes). In the laboratory, technical replicates were processed 

separately, splitting 1 L of sample into 15 mL for chemical analysis, 2 mL for coliform 

plating, 500 mL for antibiotic analysis, and 80-250 mL for DNA extraction. 

River water temperature, DO, pH and conductivity were measured on-site with a 

HQ40D portable multi-meter (Hach). Conductivity was temperature corrected (NaCl 

non-linear with reference temperature 25 ºC). River volumetric flowrates were 
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estimated using the float method with an estimated accuracy of ± 20%182,183. River 

width and depth were used to calculate cross-sectional area at the time of sampling 

at each point, which was multiplied by the measured surface velocity to obtain the 

flowrate. A factor of 0.85 corrected for surface velocity data to provide an average 

across the vertical profile182,183. 

3.2.3 Chemical analysis 

Water samples were filtered through 0.2 µm PES syringe filters (VWR) and stored for 

a maximum of 24 h at 4 ⁰C prior to chemical analysis. Ammonia (NH3-N, salicylate 

method184), chemical oxygen demand (COD, USEPA reactor digestion method185), 

total phosphorus (TP, USEPA PhosVer 3 with acid persulfate digestion method186), 

and total nitrogen (TN, persulfate digestion method187) were measured using 

commercial colorimetric test kits with a UV-vis spectrophotometer DR5000 (all Hach). 

Where necessary, samples were diluted with Milli-Q water prior to analysis. 

The Malaysian Department of Environment (DoE) applies a Water Quality Index with 

three classifications ('clean', 'slightly polluted' and 'polluted') and the National Water 

Quality Standards for Malaysia (classes I-V) to evaluate river water quality based on 

selected parameters188. Combining both approaches, three water quality categories 

were created based on COD, NH3-N and DO concentrations in the catchment: 'clean' 

(class I), 'slightly polluted' (class II) and 'polluted' (class III-V) (Appendix Table A-2). 

We compiled chemical data from S1 and S8 with national DoE river water quality 

data collected for the same locations throughout 2018 (Appendix Table A-3). 

3.2.4 Coliform and other plating 

Coliform ChromoSelect agar was used to quantify colony forming units (CFUs) of 

total coliform (TC), ESBL coliform (addition of ESBL supplement to agar), and 

carbapenem resistant bacteria (CPB-0.5 and CPB-2; addition of meropenem in 

dimethyl sulfoxide (DMSO) to agar at final concentrations of 0.5 µg/mL and 2 µg/mL) 

(all Sigma Aldrich). Each ESBL plate contained following antibiotics in final 

concentrations: ceftazidime 3 µg/mL, cefotaxime 3 µg/mL, ceftriaxone 2 µg/mL, 

aztreonam 2 µg/mL, fluconazole 10 µg/mL189. Meropenem concentrations were 

selected based on preliminary screening experiments190 and the intermediate 

meropenem CLSI minimum inhibitory concentration (MIC) breakpoint for 

Enterobacteriaceae of 2 µg/mL191. ChromoSelect agar allowed visual differentiation 

of presumptive E. coli (subsequently referred to as E. coli192) versus other coliforms. 
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Where necessary, water samples were diluted with sterile phosphate buffered saline 

(VWR) to achieve 30 to 300 CFU per plate in three technical replicates193. Each plate 

contained 100 µL or 200 µL of sample and was incubated at 37⁰C for 24 h. Negative 

controls and blanks were intermittently tested to verify in-lab contamination was 

minimised. CPB-2 were only measured for trips II-IV. 

3.2.5 Antibiotic analysis  

Solid phase extraction (SPE) coupled with ultra-high performance liquid 

chromatography-tandem mass spectrometry (UHPLC-MS/MS) was used to quantify 

22 antibiotics belonging to seven classes: β-Lactams, lincosamides, macrolides, 

quinolones/fluoroquinolones, sulfonamides, tetracyclines and others (Appendix Table 

A-4).  

Duplicate 500 mL river water samples were filtered with glass microfiber and 0.45 µm 

cellulose acetate filter paper (both VWR). Samples were adjusted to pH 3.0 with 

hydrochloric acid, 2.5 mL of Na4EDTA (100 g/L) was added, samples were spiked 

with 50 µL of isotopically labelled internal standards (ILISs at 100 ng) and stored for a 

maximum of 48 h at 4⁰C in the dark prior to SPE. ILISs used in this study included 

ceftazidime-d5, meropenem-d6, ciprofloxacin-d8, lincomycin-d3, clindamycin-d3, 

azithromycin-d3, clarithromycin-d3, erythromycin-d6, sulfamethazine-d4, 

sulfamethoxazole-d4, trimethoprim-d3, tetracycline-d6, and chloramphenicol-d5
194–196. 

The SPE cartridges (chromabond HR-X cartridges 6 mL, 500 mg, Macherey-Nagel) 

were preconditioned with 5 mL of methanol, followed by 5 mL of acidified Milli Q 

water (pH 3) at a flow rate of 3 mL/min. Subsequently, 500 mL of spiked and acidified 

surface water samples were loaded onto the cartridges at a flow rate of 5 mL/min. 

After all water samples were passed through SPE cartridges, the cartridges were 

rinsed with 5 mL of acidified Milli-Q water (pH 3.0) to remove weakly bound impurities 

and Na4EDTA. Then the SPE cartridges were dried for 30 min under vacuum. Elution 

of the target analytes from the SPE cartridges were performed using 5 mL of 

methanol at a flow rate of 1 mL/min. The resulting extracts containing the target 

analytes were dried under a gentle stream of nitrogen at 35 °C. The dried extracts 

were finally dissolved again with 1 mL of a mixture of methanol and Milli-Q water 

(50:50, v/v). The final aliquots were transferred into 2 mL amber vials and stored at    

-20 °C until UHPLC-MS/MS analyses.  
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Quantification of target antibiotics in water samples was performed using 13 ILISs, 

which corrects for losses during sample preparation and matrix effects during HPLC-

MS/MS. The relative SPE recoveries for target antibiotics in the water samples varied 

from 85.6 to 117% (Appendix Table A-5). Method quantification limits (MQL) of target 

antibiotics ranged from 0.1 to 50 ng/L, depending on the compound (Appendix Table 

A-5). River antibiotic concentrations were compared to PNECs107.  

3.2.6 Antibiotic resistant gene quantification 

River samples were analysed using HT-qPCR for 283 ARGs (36 aminoglycosides, 52 

β-lactams, nine FCA (fluoroquinolone, quinolone, florfenicol, chloramphenicol, and 

amphenicol ARGs), 46 MLSB (macrolide-lincosamide-streptogramin B ARGs), 51 

non-specific efflux pumps, seven sulfonamides, 39 tetracycline, 32 vancomycin, 11 

others), 12 MGEs (eight transposases, four integrases) and one 16S rRNA gene 

(Appendix Table A-6). For this analysis, we define the sum of transposase genes 

plus integron genes as MGEs, although we recognise that this is only an estimate 

based on the limited number of genes we quantified. 

The water samples were filtered onto 0.22 μm cellulose-nitrate filters (Sartorius) to 

extract DNA with the FastDNA SPIN kit for soil (MP Biomedicals). Filtration volume 

varied depending on the sampling point (3 technical replicates of 80-250 mL each) 

with more water filtered for upstream location S1 to collect sufficient DNA. The 

product DNA was cleaned with the QIAquick Nucleotide Removal Kit (Qiagen). DNA 

quality and quantity were measured with the NanoDrop and Qubit dsDNA HS assay 

(both Thermo Fisher Scientific), respectively. DNA absorbance ratios were 260/280 

> 1.8 and 260/230 > 1.5. Replicate samples were pooled in equal DNA aliquots to 

reach 2 µg DNA and freeze-dried prior to further analysis. Between analysis steps, 

DNA was stored at -20 ºC. 

HT-qPCR was performed with SmartChip Real-Time PCR (Wafergen) as previously 

described197,198. Amplification efficiency always was between 90% and 110% and 

detection only was confirmed when all three technical replicates were positive. 

Relative copy number of ARGs and MGEs were calculated and transformed to 

absolute copy numbers by multiplying with 16S rRNA concentration for each sample. 

ARG and MGE cell concentrations were estimated by dividing the 16S rRNA 

concentration by 4.1, the estimated average 16S rRNA gene copy number per 

bacterium199. 
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3.2.7 Statistical analysis and data visualisation 

Data from this study can be accessed through the Center for Open Science 

repository, OSF (Ott, Amelie. 2021. 'Monitoring and Modeling of Antibiotic Resistance 

in Southeast Asian Rivers. 

https://osf.io/gcpky/?view_only=90e614c2c6b64483aa503694af113789). Statistical 

analysis was performed in R (v 4.0.5)200. Graphics were created using R package 

ggplot2 (v 3.3.3)201 and finalised in Inkscape (v 1.0.2)202. Box-plot elements are 

defined as centre line (median), box limits (upper and lower quartiles), whiskers (1.5x 

interquartile range) and points (outliers). 

The Skudai catchment map was composed in ArcGIS (v 10.6.1)203. The river 

catchment was extracted through digital elevation model (DEM) slope analysis204. 

Mass loading data were calculated by multiplying concentration data with the 

corresponding measured discharge (m3/s) for each sampling site and trip.  

The substitution method R2D was used to allow statistical analysis of left-censored 

data (e.g. antibiotic and coliform data)205. For this, measurements under detection 

limit were substituted with √2/2 times the limit of detection, but only if less than 40% 

of all data points were under the detection limit205. Parameters with higher rates of 

'non-detects' were excluded from statistical analyses. Averages are reported as the 

mean with ± standard deviation (based on three or four biological replicates) 

throughout the chapter.  

Equation 3-1. Cohen's D effect size for paired t-test206.  

𝐶𝑜ℎ𝑒𝑛′𝑠 𝐷 𝑒𝑓𝑓𝑒𝑐𝑡 𝑠𝑖𝑧𝑒 𝑓𝑜𝑟 𝑝𝑎𝑖𝑟𝑒𝑑 𝑡 − 𝑡𝑒𝑠𝑡 =  
𝑆𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑎𝑛 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑆𝑎𝑚𝑝𝑙𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
  

 

Equation 3-2. Cohen's D effect size for Welch's t-test206. 

𝐶𝑜ℎ𝑒𝑛′𝑠 𝐷 𝑒𝑓𝑓𝑒𝑐𝑡 𝑠𝑖𝑧𝑒 𝑓𝑜𝑟 𝑊𝑒𝑙𝑐ℎ′𝑠 𝑡 − 𝑡𝑒𝑠𝑡 =  
𝑚𝑒𝑎𝑛𝐴  −  𝑚𝑒𝑎𝑛𝐵

√(𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝐴 + 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝐵)/2
  

Statistical significance testing employed P values and calculated Cohen's D effect 

sizes207,208 to assess spatial and seasonal differences in water quality and AR 

parameters. Large statistically significant spatial or seasonal effects were defined for 

values of Cohen's D < -0.8 or > 0.8 and P < 0.05207. Effect sizes can be negative or 

positive, depending on which mean is greater. Wet vs. dry season data were 
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compared with paired t-tests and corresponding Cohen's Ds (Equation 3-1). Up- (S1) 

vs. downstream (S8) data were compared with Welch's t-tests209 and corresponding 

Cohen's Ds (Equation 3-2).  

Benjamini-Hochberg P-adjustment was applied to correct for multiple testing210. 

Cohen’s Ds were calculated with the 'cohen.d' function in the R package effsize 

(v 0.8.1)211. Normality was assessed with the Shapiro-Wilk test. Where necessary, 

parameters were transformed using the Box-Cox transformation212, as implemented 

in the 'boxcox' function in the R package MASS (v 7.3-53.1)213 (Appendix Table A-7). 

To visualise spatial and seasonal effects, Cohen's D effect sizes were plotted against 

P values for each parameter in volcano plots, using the R package 

EnhancedVolcano (v 1.8.0)214. To analyse water quality and AR parameter 

associations, Spearman's correlations were calculated with Benjamini-Hochberg 

multiple testing correction, using R packages psych (v 2.1.3)215 and corrplot 

(v 0.84)216.  

3.3 Results 

3.3.1 Water quality and microbiology 

Water quality conditions in the catchment were characterised by generally low DO, 

high COD and very high NH3-N concentrations based on national Malaysian 

thresholds (Figure 3-3a-c, Appendix Table A-8, Appendix Table A-9, Appendix Table 

A-10). Water quality declined in the Skudai from upstream being 'clean'/'slightly 

polluted' (S1: 7.5 ± 0.5 DO mg/L, 0.05 ± 0.03 NH3-N mg/L, 5.8 ± 4.8 COD mg/L) to 

downstream being 'slightly polluted'/'polluted' (S8: 1.3 ± 0.3 mg DO/L, 4.9 ± 2 NH3-

N mg/L, 25.3 ± 16 COD mg/L). Measurements for DO, COD and NH3-N aligned well 

with the national 2018 DoE monitoring data (Figure 3-3a-c).  

Total coliform and beta-lactam resistant coliform concentrations all increased from 

upstream S1 ((1.1 ± 0.5) x 103 TC CFU/mL, (1.5 ± 1.3) x 102 ESBL coliform CFU/mL, 

(3.1 ± 4.1) x 101 CRB-2 CFU/mL) to downstream S8 ((4.1 ± 3.3) x 104 TC CFU/mL, (4 

± 4.1) x 103 ESBL coliform CFU/mL, (1.1 ± 0.2) x 102 CRB-2 CFU/mL) in the Skudai 

river (Appendix Figure A-1, Appendix Table A-11). Across the catchment, we 

observed an approximately one log10 difference between TC > ESBL coliform > CRB-

2 concentrations, meaning that ~ 10% of total coliform produced ESBL and ~ 1% of 

total coliform were resistant to 2 µg/mL meropenem. E. coli and ESBL E. coli 

concentrations increased from upstream S1 (3.5 ± 2) x 101 CFU/mL and (<0.5 − 2) x 
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101 CFU/mL, respectively to downstream S8 (2.8 ± 2.1) x 103 CFU/mL and (<0.1 – 5) 

x 102 CFU/mL, respectively (Appendix Table A-11).  

Volumetric flowrate in the Skudai increased greatly from upstream (S1: 

0.5 ± 0.3 m3/s) to downstream (S8: 82.7 ± 30.7 m3/s) with small variations observed 

across seasons (Appendix Table A-8). Mass loading data showed much greater 

transport of chemical and microbial pollutants along the Skudai river from the rural to 

urban locations. NH3-N concentrations increased almost 100-fold from up- (S1) to 

downstream (S8), but increases were > 14,000-fold greater based on NH3-N mass 

loading data (Appendix Table A-9, Appendix Table A-10). Similarly, TC, ESBL 

coliform, CRB-0.5 and CRB-2 concentrations increased from up- (S1) to downstream 

(S8) 100 – 101-fold while their mass loadings increased 102 – 103-fold (Appendix 

Table A-11, Appendix Table A-12).  

 

Figure 3-3. Chemical oxygen demand (COD, a and d), ammonia (NH3-N, b and e) and dissolved oxygen 
(DO, c) concentrations (a-c) and mass loadings (d and e) in the river catchment. Data represented is 
based on four biological replicates for the main river (S1, S2, S5, S6, S7, S8) and on three biological 
replicates for the tributaries (Se1, M5). Concentrations were compared to Malaysian water quality 
thresholds and Department of Environmental (DoE) monitoring data for S1 (DoE sampling point 3SI09) 
and S8 (DoE sampling point 3SI05). d: day. 

Interestingly, water and microbial quality improved slightly mid-stream at S6 for most 

parameters in concentration and mass loading data (Figure 3-3, Appendix Figure 

A-1). Water and microbial quality concentrations were much poorer in the heavily 

urbanized Melana tributary (M5), both relative to the Skudai itself and the 
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predominantly rural Senai tributary (Se1) (Appendix Table A-8, Appendix Table A-9, 

Appendix Table A-11). As indicator of conditions, elevated CRB-2 and CRB-0.5 

E. coli levels only were found in the Melana tributary across the catchment (Appendix 

Table A-11). 

3.3.2 Antibiotic levels 

Out of 22 antibiotics tested (Appendix Table A-4), eight antibiotics (meropenem, 

cefixime, ceftazidime, erythromycin, chlortetracycline, minocycline, oxytetracycline, 

tetracycline) were not detected in the Skudai catchment. Six antibiotics/antibiotic 

derivates (clindamycin, lincomycin, azithromycin, clarithromycin, dehydrated 

erythromycin, trimethoprim) were detected in all river samples. Highest 

concentrations were observed for amoxicillin (all samples 510 ± 906 ng/L; max 3336 

ng/L at S2), sulfamethoxazole (all samples 181 ± 383 ng/L; max 1933 ng/L at S8) 

and ciprofloxacin (all samples 131 ± 162 ng/L; max 705 ng/L at M5) with maximum 

values always detected in dry season samples (Figure 3-4). Only amoxicillin and 

ciprofloxacin were detected above PNEC values107 with all ciprofloxacin and 50% of 

amoxicillin measurements in the dry season exceeding the PNEC thresholds.  

 

Figure 3-4. Antibiotic concentrations detected in the river catchment (n = 30) (a) with seasonal 
differentiation for amoxicillin and ciprofloxacin (b), compared to Predicted No Effect Concentrations 
(PNEC) (for * no PNEC defined)107. 
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In more than 40% of the samples, ampicillin and chloramphenicol concentrations 

were under the detection limit. Consequently, only 14/16 detected antibiotics were 

summarized into 'total antibiotics' (Appendix Table A-9, Appendix Table A-10). Total 

antibiotics concentrations increased from up- (S1: 0.07 ± 0.05 mg/L) to downstream 

(S8: 1.27 ± 0.98 mg/L) and were higher in the dry than wet season. 

3.3.3 Antibiotic resistant gene abundances 

We detected 210 different ARGs (74% of assay) in the river catchment with 78 ARGs 

(28% of those assayed) shared between all river water samples (n = 30). All 12 

MGEs assayed were detected in the catchment with nine MGEs (75% of assay) 

shared across all samples (n = 30).  

 

Figure 3-5. Antibiotic resistant gene (ARG) and mobile genetic element (MGE) detected (a, d), river 
water concentrations (b, e) and normalised cell concentration (c, f) measured with HT-qPCR per 
sampling point in the Skudai catchment. Mean data represented is based on four biological replicates 
for the main river (S1, S2, S5, S6, S7, S8) and on three biological replicates for the tributaries (Se1, 
M5). For standard deviations, see SI Tables S14 to S17. FCA: fluoroquinolone, quinolone, florfenicol, 
chloramphenicol, and amphenicol ARGs. MLSB: macrolide-lincosamide-streptogramin B ARGs.  

ARG and MGE levels increased from up- to downstream in the Skudai river 

(Appendix Table A-13 to Appendix Table A-17), except for lower levels found mid-
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stream at S6 (Figure 3-5), which parallels improved water quality conditions based on 

other measured parameters. 

The number of detected ARGs increased from 119 ± 14 at S1 to 150 ± 8 at S8 

(Appendix Table A-13). The increase in ARG diversity was most apparent at the 

headwaters of the river. The most upstream site, rural S1, and the next site, semi-

urban sampling point S2, shared a core resistome of 157 ARGs and MGEs (Figure 

3-6). However, only 5 unique ARGs were detected at S1, whereas 41 unique ARGs 

(such as blaCTX-M and vanA) and 1 MGE were detected at S2. 

On a wider scale, ARG and MGE concentrations increased more than 102-fold from 

up- to downstream (S8: 1.2 ± 0.9 x 108 ARG copies/mL and 1.1 ± 0.9 x 108 MGE 

copies/mL), while ARG and MGE mass loadings increased more than 105-fold from 

up- to downstream (S8: 8.6 ± 7.2 x 1020 ARG copies/d and 8.1 ± 7.3 x 1020 MGE 

copies/d; SI Table S13). The normalised copy number of ARGs and MGEs per cell 

increased from 0.1 ± 0.1 and 0.1 ± 0 upstream to 1.7 ± 0.6 and 1.6 ± 0.6 

downstream, respectively. Detected numbers, concentrations, and normalised copy 

numbers for ARGs and MGEs were higher in both tributaries (M5 and Se1) than 

downstream in the Skudai river (S8) (Appendix Table A-13 to Appendix Table A-17). 

 

Figure 3-6. Differences in antibiotic resistant gene (ARG) and mobile genetic element (MGE) detection 
between the most upstream rural sampling point S1 and the next, semi-urban sampling point S2 on the 
Skudai. The Venn diagram indicates the number of ARGs and MGEs only detected at S1 (5), the number 
of shared ARGs and MGEs between S1 and S2 (157) and the number of ARGs and MGEs only detected 
at S2 (42). Data based on four biological replicates. FCA: fluoroquinolone, quinolone, florfenicol, 
chloramphenicol, and amphenicol ARGs. MLSB: macrolide-lincosamide-streptogramin B ARGs.  
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3.3.4 Assessing seasonal and spatial effects 

Dimensionless Cohen's D effect sizes were calculated to inform the magnitude of 

spatial (up- vs. downstream) and seasonal effects on water quality and AR levels. 

Reporting standardised effect sizes in concert with P values allows one to better 

compare study findings within and across studies217. This is particularly important for 

LMIC settings where limited data availability hinders the identification of 

environmental AR 'hotspots'.  

 

Figure 3-7. Comparing the effect of seasonality (a) and spatial variation between up- (S1) and 
downstream (S8) (b) for concentration parameters, based on statistical significance and Cohen's D 
effect size. Statistical comparisons performed with the paired t-test or Welch's t-test with Benjamini-
Hochberg multiple testing correction. A high -Log10P value indicates high statistical significance with -
Log10P(2) = P (0.01) and -Log10P(3) = P(0.001). A Cohen's D effect size over 0.8 or under - 0.8 indicates 
a large seasonal or spatial effect on the parameter. Only selected parameters are labeled, for more 
detail see SI Tables S18, S19. ARG: antibiotic resistant genes. COD: chemical oxygen demand. CRB-
0.5: carbapenem resistant bacteria selected for with 0.5 µg/mL meropenem. ESBL: extended-spectrum 
β-lactamase. DO: dissolved oxygen. MGE: mobile genetic elements. NH3-N: ammonia. TC: total 
coliform. TN: total nitrogen. TP: total phosphorus. 

Seasonality only significantly affected observed total antibiotic concentrations (paired 

t-test with P < 0.05 and large Cohen’s D effect size > 0.8, Appendix Table A-18). For 

all other parameters, season did not have any significant effects on concentration 

and mass loading data (Figure 3-7a, Appendix Table A-18). Conversely, spatial 

effects (up- vs. downstream) were significantly greater for all parameters, and more 

apparent in mass loading data (Cohen's D range -13.9 for S16 rRNA to -6.8 for ESBL 
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coliform, Appendix Table A-19) versus concentration data (Cohen's D range MGE -

6.85 to -1.6 for CRB-0.5, Appendix Table A-19). For concentrations, the largest 

Cohen's D effect sizes were observed for DO (Cohen's D 15.6), MGE and ARG river 

water concentrations (Cohen's D - 6.5 for ARG and -6.85 for MGE) (Figure 3-7b). 

3.3.5 Defining a surrogate marker for antibiotic resistance 

Spearman correlation analysis was performed between all monitored parameters to 

identify possible 'easy-to-measure' surrogates that associated with elevated AR in 

this catchment (Figure 3-8). For this, we focussed on correlations between AR 

indicators (ESBL coliform, ESBL E. coli, total antibiotics, total ARGs, total MGEs, 

int1) and physico-chemical water quality parameters (temperature, pH, DO, 

conductivity, NH3-N, COD, TN, TP). These standard water quality parameters also 

are included in the Malaysian river water quality monitoring program92.  

 

Figure 3-8. Spearman correlations between selected physico-chemical water quality, biomass and 
antibiotic resistance (AR) concentrations for the river catchment (n=30). Correlation values only shown 
for P < 0.05 with P values corrected for multiple testing with the Benjamini-Hochberg approach. ARG: 
antibiotic resistant genes. COD: chemical oxygen demand. DO: dissolved oxygen. MGE: mobile 
genetic elements. NH3-N: ammonia. S16: S16 rRNA gene. T: temperature. TC: total coliform. TN: total 
nitrogen. TP: total phosphorus.  

Out of the physico-chemical water quality parameters, DO and NH3-N correlated 

strongest with total ARGs, the sum of all ARG copy number concentrations in river 
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water (Spearman’s ρ 0.81 and 0.83 with P < 0.05, respectively). Within the AR 

indicators, total ARGs correlated strongly with intl1 (Spearman’s ρ 0.98, P < 0.05) but 

less so with total antibiotics (Spearman’s ρ 0.7, P < 0.05). When comparing 

correlations between total ARGs and each ARG class with total versus individual 

antibiotic concentrations, the strongest correlations always were between total ARGs 

and total antibiotics (Appendix Table A-20). This was also true when comparing 

amoxicillin and ciprofloxacin with their ARG class, suggesting specific selection by 

individual antibiotics is not evident, even the detected antibiotics near their PNEC 

levels. 

3.4 Discussion 

3.4.1 Comprehensive environmental antibiotic resistance monitoring 

Discharge and mass loadings are rarely estimated in environmental AR monitoring 

studies. However, we show that both concentration and load provide valuable 

complementary information to understand the processes occurring in a river 

catchment. In the Skudai, river health improved mid-stream at the semi-urban 

sampling point S6 despite worse water quality conditions further up- and 

downstream. Considering the combination of lower pollutant concentrations and 

mass loadings, this was likely caused by a combination of reduced wastewater 

entering the river in this more agricultural reach (in comparison to more urbanized 

reaches up- and downstream, Figure 3-1) while simultaneously, groundwater and/or 

cleaner tributaries (e.g. Senai) continued to dilute the river water with pollutants 

degrading and/or settling to the sediment70. More accurate methods exist to estimate 

flow than the applied float method; e.g., Acoustic Doppler Current Profilers. However, 

the easy and cost-effective application makes the float method particularly suitable 

for countries with limited resources218. 

Accounting for volumetric flow is particularly important for countries with dry and wet 

seasons. Comparing total antibiotic concentrations and mass loadings, we 

demonstrate that while antibiotic releases into the catchment likely do not 

consequentially vary across seasons for this catchment, reduced rainfall during the 

dry season resulted in increased river antibiotic concentrations and slightly increased 

exposures. Seasonality is expected to have a much larger effect on water quality/AR 

parameters in other SE Asian regions with more pronounced dry/wet seasons than 

here for southern peninsular Malaysia.  
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The highest antibiotic concentrations in the catchment based on both, maximum and 

mean, were recorded for amoxicillin, ciprofloxacin, and sulfamethoxazole. A 2014 

study found amoxicillin to be the most prescribed antibiotic in Malaysia219. Mean 

amoxicillin river concentrations were higher than previously recorded for European 

treated wastewater treatment plant effluents and surface waters220–222. 

Sulfamethoxazole and ciprofloxacin concentrations were higher than previously 

recorded for Malaysian surface waters223,224, but comparable to some other East and 

SE Asian surface water studies79. There is limited knowledge on which environmental 

antibiotic concentrations select for resistant bacteria106,107. In this study, only 

amoxicillin and ciprofloxacin exceeded the PNEC thresholds107, specifically during 

the dry season. 

Comparing the Skudai ARG concentrations to other ARG HT-qPCR studies based on 

the same primer sets and analytical methods (Appendix Figure A-2), we found the 

upstream ARG levels to be comparable to previous findings in upstream Chinese 

river reaches (105 – 106 ARG copies/mL135,225). Downstream Skudai ARG 

concentrations (~ 108 ARG copies/mL, this study and135) were similar to wastewater 

treatment effluent ARG concentrations (107 – 109 ARG copies/mL) recorded in Spain 

and China but lower than influent ARG concentrations (109-1010 ARG copies/mL) 

from the same studies70,226. The detected number of ARGs upstream in the Skudai 

was higher than in any other of the reported upstream river water, upstream river 

sediment, lake, or soil samples. The number of detected ARGs downstream in this 

study also was the highest across all cited studies.  

Movement from the rural (S1) to semi-urban (S2) locale added over 40 additional 

genes, many associated with faecal matter and possible multidrug resistance, such 

as blaCTX-M and vanA. BlaCTX-M encodes for high resistance to β-lactam 

antibiotics227. VanA is a plasmid borne gene which confers high resistance to 

vancomycin and is most commonly associated with E. faecium and E. faecalis228. 

The S1 to S2 reach has limited wastewater treatment which likely introduced these 

ARGs into the river, suggesting limited local wastewater treatment may be the 

dominant source of AR genes in this part of the river, which also was seen in an AR 

estuary study in southern Malaysian97. 

3.4.2 Reporting standardised effect sizes 

Effect sizes are commonly applied in bioinformatics, medical drug trials, and meta-

analysis229. However, to the best of our knowledge, this is the first work to apply the 
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principle of standardised effect sizes to AR/river water quality monitoring. While 

unstandardised effect size statistics such as mean differences are important, 

additional reporting of standardised, dimensionless effect sizes such as Cohen's D 

effect size allows one to more easily compare seasonal and spatial effects on various 

parameters217. This is particularly crucial for understanding and comparing results 

from environmental AR monitoring studies where analysis costs are high, resulting in 

little available data, mostly existing for HICs27. Routine reporting of effect sizes will 

encourage researchers to view their results in the context of previous studies and 

facilitate the incorporation of results into future meta-analysis217. We support 

Nakawaga and Cuthill (2007) in their encouragement to report effect size statistics 

and their confidence intervals in all biological journals.  

Using volcano plots, we provide an easy way to visualise seasonal and spatial effects 

together with P values to compare different water quality and AR parameters. For 

concentration data, we observed the largest statistically significant spatial effects (up 

vs. downstream) for ARG, MGE and DO concentrations. Spatial effects were even 

larger for all parameters based on their mass loadings than concentrations. This is 

not surprising when considering that the Skudai river increases in depth and 

particularly, width from 5 m at the most upstream sampling point to 75 m at the most 

downstream sampling point. For this study, we applied the Cohen's D threshold of 

over 0.8 or under -0.8 to define a large effect size as originally proposed by Cohen 

for behavioural studies207. However, depending on the study design, this threshold 

can be adapted.  

3.4.3 Surrogate marker for predicting antibiotic resistance. 

River water in more urban areas of the Skudai catchment were characterised by 

higher NH3-N and lower DO levels, both indicators of faecal pollution230. When 

sewage enters a river, the organic matter and nitrogen containing components are 

oxidized, decreasing DO drastically231. This process has been known for many years 

and is mathematically described by DO sag curves232. Based on our data and local 

water quality thresholds, the Skudai catchment is classified in the slightly polluted to 

polluted range, which aligns with the Malaysian DoE classification94. Our DO and 

NH3-N data aligns well with the long-term national Malaysian dataset (Figure 3-3b,c), 

suggesting our correlations between these parameters and AR markers might be 

used to extend existing Malaysian datasets to AR prediction, in theory suggesting 

places of potentially elevated AR using modelling where no current AR data exists.  
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For the Skudai catchment, we found DO and NH3-N exhibit the strongest correlations 

with high total ARG concentrations. This does not mean that low DO or high NH3-N 

cause high total ARG concentrations (or vice versa), although recent work shows that 

HGT frequency can be much higher under low oxygen conditions233, suggesting 

lower DO may increase local ARG transmission. In this catchment, lower DO and 

higher NH3-N are likely associated with insufficiently treated sewage entering the 

river, which hints it is also a major route for ARGs entering the river.  

Given the above, DO is particularly well-suited as a surrogate for AR as it can easily 

be measured with a hand-held probe, relative differences often mirror sewage inputs, 

and DO potentially impacts in situ HGT frequency. DO is also one of the most 

commonly modelled indicators of stream, river and lake health with a vast array of 

models available159. Consequently, we propose that for this catchment, DO 

concentrations are a useful surrogate to understand previous AR levels and model 

future AR levels. Future work should evaluate the applicability of this surrogate for 

other catchments in Malaysia and SE Asia. However, for such surrogates to have 

greatest value, they should be coupled with other predictive AR approaches that do 

not heavily rely on directly monitored data, such as genomic and other modelling 

tools for AR bacteria234–236. 

Interestingly, within the AR indicators, total antibiotic concentrations exhibited the 

lowest correlations with other AR parameters. The weaker correlation of total 

antibiotics with the other AR parameters might be due to the fact that many 

antibiotics quickly degrade in the environment while some ARGs and ARBs persist 

for longer237. However, even in the Skudai river that has relatively high antibiotic 

levels, any selective effect of antibiotics is probably minor (Figure 3-4) compared with 

the greater load of ARGs entering the river through less treated wastewater (Figure 

3-5). This is best exemplified by the many 'new' ARGs entering the river between S1 

and S2 (Figure 3-6), which dwarfs any effect of antibiotics themselves. This does not 

mean low levels of antibiotics are incapable of influencing ARG selection in aquatic 

systems238, but data here suggest untreated sewage inputs have much greater 

immediate impact on in situ AR than antibiotic releases in a catchment like the 

Skudai. 

Taken together, this work shows that simple water quality markers, like DO and NH3-

N, can be valuable surrogates for local stakeholders to identify AR hotspots in rivers 
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and propose social and/or engineering interventions. This does not mean that they 

are universally applicable, such as near major non-sewage organic waste inputs. 

However, DO and NH3-N clearly mirror sewage, which often dominates ARG and AR 

bacteria inputs, especially in LMIC rivers. DO and NH3-N also are inexpensive to 

measure and already exist in current monitoring programmes. Therefore, we propose 

DO and NH3-N as the 'first point of call' surrogates for AR in rivers. They clearly can 

be coupled with parameters such as ESBL E. coli for environmental AR monitoring, 

which the WHO is already using to monitor AR across environments (Tricycle 

project115). However, DO and NH3-N are more amenable to water quality modelling, 

which might ultimately be the best and most affordable way of identifying AR 'hot 

spots' in places with limited existing data.   
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Chapter 4. Predicting antibiotic resistance with national 

water quality monitoring data and watershed modelling 

4.1 Introduction 

Many LMICs maintain longstanding national water quality monitoring programs92. 

Sustainable Development Goal (SDG) Indicator 6.3.2 recommends oxygen, salinity, 

nitrogen, phosphorus and acidification as core water quality parameters, but often 

LMICs measure additional parameters239. For example, the Water Environment 

Partnership in Asia (WEPA) states Indonesia and Malaysia monitoring over 40 and 

70 parameters, respectively (Figure 4-1)92. 

 

Figure 4-1. Number of indicators included in national surface water quality monitoring programs for 
selected Asian countries. All countries except Lao PDR and Nepal conduct regular national water quality 
monitoring of public water bodies. In Lao PDR, water quality is monitored on an ad-hoc basis as 
necessary. In Nepal, water quality is monitored by different ministries and agencies, but no systematic 
surface water quality monitoring is performed92. 

The number of water quality monitoring stations differs depending on the country and 

data source consolidated. The Global Freshwater Quality Database GemStat, part of 

the UN Environment Programme (UNEP), states average monitoring station densities 

of 0.3, 0.02 and 0.08 stations per 10,000 km2 for Latin America, Africa and Asia, 

respectively240,241. As comparison, the EU Water Framework Directive recommends a 

station density for water quality surveillance of 4 per 10,000 km2 242. However, often 

more national monitoring stations exist than are reported for in GemStat. For 

Malaysia, seven river water quality stations are included in GemStat while the 
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Malaysian Department of Environment (DoE) states 904 stations in 477 rivers, 

covering 146 river basins (Figure 4-2a,c)92,240. 

The well-established Malaysian river water quality monitoring program started in 

1978 to record baselines and detect water quality changes93. Water samples are 

collected at regular intervals from designated stations for in-situ and laboratory 

analysis to determine physico-chemical and biological parameters (Figure 4-2b)93. 

Typically, manual water quality monitoring is performed with a few selected 

continuous water quality monitoring stations at sensitive locations, including 

upstream of water abstraction points93. 

 

Figure 4-2. National Malaysian Department of Environment (DoE) river water quality stations for 
peninsular Malaysia (a) and Sarawak, Sabah (c) with river water quality parameters stated (b)93. 

Consequently, a vast amount of data are available not only in Malaysia but also other 

SE Asian countries to identify and manage water pollution92. In the absence of 

environmental AR monitoring and modelling in LMICs, such national water quality 

datasets i) can help pinpoint augmented AR levels through identifying pollution 

hotspots via easy-to-measure surrogates captured in the datasets (Chapter 3), and ii) 

are crucial for developing watershed models to predict AR levels for different 

pollution scenarios243. 

The watershed model HSPF is well suited to incorporate an AR element for several 

reasons: i) HSPF is often used to investigate the effects of land-use changes and 

point or diffuse source treatment alternatives, which are key research questions for 

environmental AR162; ii) HSPF is composed of a set of modules to simulate hydrology 

and water quality in the watershed and water body, allowing sufficient flexibility to 

model AR244,245; and, iii) HSPF allows to simulate key processes, covering soil 
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contaminant runoff processes together with in-stream hydraulics, water temperature, 

sediment transport, nutrients and sediment-chemical interactions, capturing important 

river processes to describe environmental AR (Appendix Table B-1)159. 

The previous chapter demonstrated that lower DO and higher NH3-N are likely 

associated with insufficiently treated sewage entering the Skudai river, which is 

probably also the major route for ARGs entering the river. This link is now further 

explored with the national Malaysian DoE dataset for this catchment. In the absence 

of AR parameters for this (and any other LMIC) national dataset, the relationships 

and predictive power between abiotic water quality parameters (such as NH3-N and 

DO) and biotic parameters (such as coliform and E. coli) are assessed. In addition, 

we propose to amend existing abiotic water quality components in HSPF (such as 

DO) to model AR fate and exposure in surface waters.  

4.2 Material and methods 

4.2.1 National water quality monitoring data 

Water quality data for the Skudai catchment was available for 2002 to 2006 and 2010 

to 2018. Nine DoE sampling points were included in the analysis, seven on the 

Skudai river (3SI18, 3SI09, 3SI10, 3SI13, 3SI07, 3SI06, 3SI05) and two on the 

Melana river (3SI15, 3SI16) (Appendix Figure B-1). Out of these, three DoE sampling 

points aligned with sampling points from the previous study (Chapter 3): S1 (3SI09), 

S7 (3SI06) and S8 (3SI05). From 2002 to 2016, water quality measurements were 

performed every month, but reduced to every two months in 2017 and 2018 with less 

regular monitoring at the most upstream Skudai (3SI18) and Melana (3SI15) 

sampling locations (Appendix Table B-2). Consequently, these two sampling points 

were excluded from annual overview trend analysis to not skew the results.  

Equation 4-1. Malaysian water quality index (WQI) calculation based on sub-indices (SI). For subindex 

equations, see 246.  

𝑊𝑄𝐼 = 0.22 × 𝑆𝐼𝐷𝑂 + 0.19 ×  𝑆𝐼𝐵𝑂𝐷 + 0.16 ×  𝑆𝐼𝐶𝑂𝐷 +  0.15 × 𝑆𝐼𝐴𝑁 + 0.16 × 𝑆𝐼𝑆𝑆 + 0.12 ×  𝑆𝐼𝑝𝐻   

𝑆𝐼𝐷𝑂    Subindex dissolved oxygen 
𝑆𝐼𝐵𝑂𝐷:   Subindex biochemical oxygen demand 
𝑆𝐼𝐶𝑂𝐷:   Subindex chemical oxygen demand 
𝑆𝐼𝐴𝑁  Subindex ammonium nitrogen  
𝑆𝐼𝑆𝑆  Subindex suspended solids 
𝑆𝐼𝑝𝐻   Subindex pH 

 

Following DoE parameters were included into the analysis: DO (mg/L), temperature 

(ºC), conductivity (us), salinity (ppt), COD (mg/L), NH3-N (mg/L), NO3 (mg/L), PO4 
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(mg/L), coliform (CFU/100 mL) and E. coli (CFU/100 mL). Following the Malaysian 

DoE approach, the WQI was calculated as described in Equation 4-1246. The WQI 

classifies rivers into polluted (0-59), slightly polluted (60-80) or clean (81-100)246. 

Details on DoE water quality monitoring methodologies such as test kits, agars, 

detection limits, replicates and controls were not available. 

4.2.2 Statistical analysis and data visualisation  

Statistical analysis was performed in R (v 4.0.5)200. Graphics were created using R 

package ggplot2 (v 3.3.3)201 and finalised in Inkscape (v 1.0.2)202. Box-plot elements 

are defined as centre line (median), box limits (upper and lower quartiles), whiskers 

(1.5x interquartile range) and points (outliers). DoE water quality data for 2018 was 

analysed with Spearman's correlations with P < 0.05 (Benjamini-Hochberg multiple 

testing corrected), using R packages psych (v 2.1.3)215 and corrplot (v 0.84)216. 

Linear regression modelling assessed the relationship between NH3-N and log10 

coliform concentrations. Model residuals were analysed for error mean, normality 

(histogram and Q-Q plot) and independence (Durbin-Watson test in R package 

lmtest (v. 0.9-38))247. The predictive power of the linear regression model was tested 

by comparing predicted 2017 coliform data (based on NH3-N) with measured 2017 

coliform data, calculating the Pearson correlation coefficient.  

4.2.3 HSPF Skudai model 

The watershed model HSPF was chosen to be assessed for use in providing 

information to detect AR hot spots. A previously developed HSPF Skudai baseline 

model166,177,179,248–250 was run to model streamflow and DO from 2002 to 2015, 

covering the original calibration and validation periods used in split-sample testing of 

model performance. R2 and Nash–Sutcliffe model efficiency coefficient (NSE) are 

reported to assess model performance. HSPF is a semi-distributed model (Table 

2-3). Consequently, the Skudai catchment was divided into 33 hydrologic response 

units (HRUs)179. Each HRU is assumed to have a similar hydrologic response based 

on land use/cover, soil, slope, and land management practices245. The various 

hydrologic processes in HSPF are mathematically represented as flows and 

storages161. In each HRU, the soil layer is vertically divided into three layers of 

storage called upper-zone, lower-zone, and active groundwater storage (Figure 4-3). 

The moisture conditions in these three storages impact the water flow and 

evapotranspiration in each HRU162. Each HRU has three types of flow components 

contributing to the streamflow, called surface flow, interflow and groundwater flow, 
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each of which is associated with one of the three soil layers162. The streamflow is 

routed downstream from reach to reach using the kinematic wave model, an 

approach widely used in hydrological models to describe channel and overland 

flow244,251. Land segments in HSPF are either pervious or impervious, allowing water 

to infiltrate or not, respectively161. 

 

Figure 4-3. Hydrologic processes simulated in HSPF pervious land segment (PERLND) module 
(amended from 252). ET: evapotranspiration.  

 

Figure 4-4. Conceptual model of dissolved oxygen (DO) processes represented in HSPF. BOD: 
biochemical oxygen demand161,253. For details on the code, see HSPF user manual161.  

HSPF simulates DO through separate subroutines as a function of water 

temperature, downstream transport of DO and BOD, settling of BOD material, SOD, 



Chapter 4  

51 

resuspension of benthic BOD, reaeration, and oxygen depletion caused by the decay 

of oxygen-demanding materials (Figure 4-4)159,244. DO sources and sinks are 

simulated as first-order reactions, except for SOD which is assigned by the user to 

each reach159. HSPF accounts for the absence or deficiency of oxygen by reducing 

oxidation reactions at low DO concentrations159. 

4.3 Results 

4.3.1 National water quality data 

While WQI, DO and NH3-N concentrations varied annually for the Skudai catchment, 

no clear improvement or decrease in river water quality was observable when 

comparing measurements for all DoE stations from 2002 to 2018 (Appendix Figure 

B-2a,c,e). Slight decreases in river water quality only became apparent when 

analysing the most downstream Skudai sampling point (3SI05 = S8), for example for 

NH3-N concentrations (Appendix Figure B-2b).  

The predictive power of easy-to-measure abiotic surrogates for more complex biotic 

parameters (here coliform/E. coli but ultimately environmental AR, see Chapter 3) 

was investigated for the DoE monitoring dataset. For 2018 data, Spearman's 

correlation were strongest for NH3-N with coliform and E. coli (Spearman’s ρ 0.77 

and 0.79, respectively, with P < 0.05, n = 54, Figure 4-5) and slightly weaker for DO 

with coliform and E. coli (Spearman’s ρ 0.64 and 0.56, respectively with P < 0.05, 

n = 54, Figure 4-5). Despite higher NH3-N correlations with E. coli than coliforms, 

coliforms were chosen for linear regression analysis as several E. coli data points 

were under the detection limit. 
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Figure 4-5. Spearman correlations between selected physico-chemical water quality and microbial 
parameters for the Skudai catchment based on the 2018 Department of Environment (DoE) dataset 
(n = 54). Correlation values shown for P < 0.05 with P values corrected for multiple testing with the 
Benjamini-Hochberg approach. COD: chemical oxygen demand. DO: dissolved oxygen. NH3-N: 
ammonia. NO3: nitrate. PO4: phosphate. 

The linear regression model (NH3-N, log10 coliform) explained 52% of the data 

variability at P < 0.0001 (Figure 4-6). The mean of the residuals approximated zero 

with the residuals being serially uncorrelated (Durbin-Watson test P >0.05) and 

normally distributed (Appendix Figure B-3). The linear regression model was applied 

to predict 2017 coliform concentrations with 2017 NH3-N data. The measured and 

predicted coliform concentrations correlated moderately (Pearson's r 0.48, 

P < 0.0001, n = 73). 
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Figure 4-6. a) Linear regression model for NH3-N and coliform (log10 transformed) concentrations based 
on the 2018 Department of Environment (DoE) dataset (n = 54). b) Predicted coliform concentrations 
based on measured NH3-N 2017 data (see equation in panel a) plotted against measured coliform data 
for 2017 (n = 73). 

4.3.2 HSPF simulation of streamflow and dissolved oxygen 

HSPF was tested for its reliability to model streamflow and DO concentrations in the 

Skudai catchment (Appendix Table B-3) with the future goal of predicting relative 

ARG concentrations using DO and-or ammonia as abiotic surrogates. HSPF model 

calibration and validation followed the split-sample calibration/validation procedure 

(see 179 for a full list of calibrated parameters).  

 

Figure 4-7. Comparison of the observed and simulated streamflow mid-stream Skudai at Kampung 
Separa (model validation).  
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HSPF simulated streamflow in the Skudai catchment (Figure 4-7) well for the 

calibration (2002 – 2008, R2 = 0.89, NSE = 0.88) and validation period (2008 – 2014, 

R2 = 0.83, NSE = 0.82)179. 

 

Figure 4-8. Comparison of the observed and simulated dissolved oxygen (DO) concentration mid-
stream Skudai (3SI17; model validation). 

The Skudai HSPF baseline model simulated DO (Figure 4-8) well for the calibration 

period (2002 – 2009, R2 = 0.79, NSE = 0.79) and moderately for the validation period 

(2009 – 2015, R2 = 0.44, NSE = 0.39)179.  

For both, streamflow and DO concentrations, the HSPF baseline model well 

represented the catchment in capturing seasonality and interannual variability.  

4.4 Discussion 

This study supports the hypothesis that easy-to-measure abiotic data from national 

water quality monitoring in LMICs could be used to predict more complex biotic 

parameters such as AR.  

For the Malaysian DoE dataset, abiotic parameters (DO and NH3-N) correlated 

strongest with E. coli and coliform levels. With a crude simple linear regression 

approach, we were able to predict coliform concentrations with statistical 

significance, in this case, solely based on NH3-N levels. Clear relationships between 

abiotic and biotic factors suggests that a hydrological model such as HSPF should be 

able to predict ARG concentrations based on DO or NH3-N concentrations.  

Prior to amending an abiotic component in HSPF to describe AR, HSPF was first 

investigated for its ability to accurately simulate streamflow and DO in the Skudai 

catchment. HSPF well captured the seasonality of river flows and DO together with 
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inter annual variability (Figure 4-7). This may be taken to infer that the dominant flow 

pathways are reasonably captured by the model (i.e., faster runoff, slower interflow in 

the upper soil layers and groundwater; note that the model has 3 layers which 

correspond to these 3 runoff processes). A prerequisite for water quality modelling at 

the catchment scale is a good representation of the hydrological cycle.  

The intension was to then extend the model to 2018 to compare simulated DO with 

measured ARG data and ultimately amend the DO HSPF component to accurately 

predict ARG levels. However, data issues due to incomplete flow record access 

delayed model development. Nevertheless, the envisioned concept is demonstrated 

below where measured DoE DO data and linear regression modelling was applied to 

estimate 2010 Skudai ARG concentrations (Figure 4-9).  

 

Figure 4-9. Demonstrating the concept to estimate antibiotic resistance gene (ARG) levels through 
easy-to-measure surrogates such as dissolved oxygen (DO). Monthly measured 2010 Department of 
Environment (DoE) DO data (a) and predicted ARG data (b) for the Skudai river, represented as 
means with standard deviations. ARG levels were estimated with a linear regression model, based on 
ARG-DO relationships observed in the 2018 field study (Chapter 3, log10 ARG = -0.3319*DO + 
8.5305).  

No AR datasets are available to validate these predictions, but the figure visualises 

how easy-to-measure surrogates might predict AR 'hot spots' in LMIC catchments. 

The above analyses provide an indication of the capabilities of modelling, and the 

future promise. By capturing key hydrological and water quality processes, 

catchment models such as HSPF will further improve AR simulations via abiotic 

surrogates. Work is ongoing to modify HSPF to predict relative ARG concentrations 

using DO and/or ammonia as abiotic surrogates. Such surrogate-based predictive 

monitoring approaches will not substitute for detailed local analysis, but they can be 

used to triage catchments for limited expense, allowing LMICs to focus resources on 

AR studies on places with potentially greater exposure risk.   
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Chapter 5. Improved quantitative microbiome profiling for 

environmental antibiotic resistance surveillance 

5.1 Introduction 

The huge impact of COVID-19 on human health and global economies provides a 

glimpse of what might occur if AR continues to increase9. Between 2014 and 2016, 

more than one million people died due to drug resistant pathogen infections and 

increasing death tolls are expected in the future10. AR pathogens not only spread 

through hospitals, but also enter the environment via insufficiently treated 

sewage121,254. This is especially a problem in emerging countries. Increased 

economic wealth permits greater access to antibiotics while waste management often 

lags behind21. However, quantifying the extent of environmental AR over space and 

time is difficult because methods are not standardised, with researchers using 

different measures of AR (e.g. antibiotics, ARGs; ARBs; and MGEs) across studies28. 

Ideally, bacterial hosts of ARGs should be tracked255, but reliable molecular methods 

that couple bacteria species and ARG abundances (e.g. epicPCR132, Hi-C256) are still 

in their infancy. Further, linking microbiome characteristics from DNA sequencing 

with quantitative ARG data is an unfulfilled aspiration for studying environmental 

AR134,135. This restricts our ability to perform realistic Quantitative Microbial Risk 

Assessments (QMRA) needed to quantify true risks of environment AR 

exposures257,258. Correlation-based methods can develop hypotheses to guide future 

experimental work but they are restricted due to technical biases introduced from 

DNA sequencing229,255,259.  

Next-generation sequencing (NGS) data are inherently compositional, providing 

relative abundance information at best136. It is impossible to measure absolute 

growths or declines of particular microorganisms solely with relative abundances as, 

for example, the increase of one taxon leads to the concurrent decrease of 

other(s)137. Analysing relative abundance data using inappropriate statistical tools 

can yield up to 100% false detection rates and their application contributes to a 

general lack of reproducibility among microbiome studies260,261.  

While compositional approaches are available136, the gold standard requires cell 

count estimates to calculate absolute abundances255,261. Such a quantitative 

approach can also correct sequencing data for sampling intensity to account for 

varied microbial loads across samples137 (Figure 5-1). Despite environmental studies 
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routinely providing cell count estimates, these data are rarely used to calculate 

absolute microbial taxon abundances262, with no studies correcting for sampling 

intensity137. We contend that environmental researchers should use quantitative 

microbiome profiling (QMP)137 instead of relative microbiome profiling (RMP) to 

represent a more accurate picture of relationships between microbiomes and 

metadata (such as ARG concentrations) and guide future QMRA applications.  

 

Figure 5-1. Schematic explaining relative (RMP) and quantitative (QMP) environmental microbiome 
profiling. Both, the RMP and QMP approach do not correct for biases introduced by sample collection, 
DNA extraction, PCR or library preparation. QMP approach based on Vandeputte et al. ( 2017). While 
cell counts vary 100-fold between river water samples A and B, sequencing depth (= reads) per sample 
is independent of cell counts in next-generation sequencing. The RMP approach rarefies to lowest 
sequencing depth per sample, calculating relative abundance (%), which results in sample A being 
sequenced more intensively than sample B. The relative abundance profile poorly reflects the real 
environmental taxa distribution. The QMP approach corrects for sampling intensity by rarefying to the 
lowest sampling depth (= sequencing depth divided by cell counts) and then multiplies the rarefied taxon 
abundance with estimated cell counts to obtain absolute abundances (here per mL river water). As the 
blue taxon was equally abundant in A and B, the fact that it is included for RMP sample A can be 
considered an artefact of uneven sampling intensity.  
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Characterising and comparing anthropogenic impacts on environmental microbiomes 

(e.g. sewage entering rivers, waste leaching etc.) is generally hindered by the use of 

varying microbial diversity indices across studies263–265. For a more meaningful 

quantification, 'diversity' needs to be unambiguously defined and applied in 

microbiome research266. Common diversity indices such as the Shannon and 

Simpson index do not measure diversity, but uncertainty and probability, 

respectively265. In contrast, Hill numbers (Figure 5-2) provide a statistical framework 

that unifies and generalizes popular indices, and are intuitive and flexible enough to 

address a wide range of scientific questions265,267,268. Hill numbers were first 

proposed almost 50 years ago268, but despite their continued appraisal265–267, their 

use in microbiome research is rare269,270, especially for environmental microbiomes. 

Hill numbers qD also have several additional advantages over other common 

diversity indices (Table 5-1).  

 

Figure 5-2. Schematic explaining the relationship between microbiome composition, diversity indices 
(richness, Shannon index and Simpson index), Hill numbers qD (a) and diversity profiles for four 
theoretical systems (b). Figure adapted from Alberdi and Gilbert (2019a). For sample 1 and sample 4, 
all amplicon sequence variants (ASVs) are evenly distributed, so Hill numbers of all orders of diversity 
(q) stay the same within sample 1 and sample 4. As sample 4 has half the amount of equally abundant 
ASVs to sample 1, Hill numbers also half, in contrast to the Shannon index or Simpson index. At q = 0, 
only richness is considered, ignoring relative abundance. Consequently, for q = 0, Hill numbers for 
samples 1, 2 and 3 are the same. For q > 0, Hill numbers decrease as the importance attributed to 
abundant ASVs increases. As sample 3 is dominated by 5 ASVs, Hill numbers 1D and 2D approximate 
5. The diversity profile (b) shows the number of ASVs and evenness of the four theoretical systems. A 
flat profile indicates evenness. 

Despite clear advantages in using Hill numbers271 and the QMP approach137 for 

improving reliability and comparability of environmental microbiomes, their application 

is rare137,269, and to our knowledge, has never been combined. In this chapter, a 
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workflow is provided that combines QMP (based on parallelization of amplicon 

sequencing and 16S rRNA qPCR data to estimate cell counts) with absolute 

resistome profiling (based on high-throughput qPCR for almost 300 ARGs and 

MGEs) to better qualify AR in an impacted river. Such absolute microbiome profiling 

bypasses compositional effects in the reconstruction of microbiota interaction 

networks, allowing one to investigate correlations of taxa with ARGs and MGEs 

essential for QMRA. We also show the benefits of using the unified Hill number 

diversity framework to compare microbial community dynamics over space and time 

and confirm how misleading RMP approaches are for interpreting environmental 

microbiome and resistome data.  

Table 5-1. Advantages of Hill numbers in comparison to standard diversity indices.  

1 Interpretation of the measure and its measurement unit is always the same in 'effective 

numbers of species', i.e. the number of equally abundant species (or for DNA based 

approaches operational taxonomic unit (OTU)/amplicon sequence variant (ASV) 271) required to 

generate an identical diversity268. 

2 Hill numbers double as the amount of equally common species doubles (called the 'doubling 

principle'), which allows more meaningful calculations of statistical significant changes265. 

3 The sensitivity towards abundant and rare species can be modulated with a single parameter 

with Hill numbers (order of diversity – q). 

4 Hill numbers can be computed taking into account phylogenetic or functional relationships 

among species (e.g. similar to Faith’s Phylogenetic Diversity271). 

5 Hill numbers were originally developed for abundance data, but can also be applied to 

incidence data267. 

6 Within the Hill framework, the diversity of a system can be partitioned, so α-diversity 

(average diversity of subsystems) multiplied by β-diversity (difference between subsystems) 

gives γ-diversity (entire diversity of the system)272,273. 

7 Multiple (dis)similarity measurements derived from β-diversities can be calculated from Hill 

numbers with some being equal to other popular indices e.g. Unifrac267. 

8 The calculation of Hill numbers is straight-forward and can easily be implemented into 

existing bioinformatic pipelines274. 

 

5.2 Methods 

5.2.1 Sample collection and DNA extraction 

We collected river water samples (3 x 1 L) from the Skudai catchment, Malaysia (288 

km2, Figure 3-1) at eight sampling points (6x main river and 2x tributaries) during five 

sampling trips to capture seasonality (1x November 2017, 2x March 2018 and 2x July 

2018). In total, 38 samples were collected with five biological replicates for the main 

Skudai river (S1, S2, S5, S6, S7, S8) and four biological replicates for the tributaries 

Melana (M5) and Senai (Se1). For more details on sample collection, see 3.2.2.  
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River water was filtered onto 0.22 μm cellulose-nitrate filters to extract DNA with the 

FastDNA SPIN kit for soil (MP Biomedicals). DNA was cleaned with the QIAquick 

Nucleotide Removal Kit (Qiagen). DNA quality and quantity were measured with 

NanoDrop and the Qubit dsDNA HS assay (both Thermo Fisher Scientific), 

respectively. The three technical replicates were pooled to have sufficient DNA for 

downstream processes. DNA was stored at -20 ºC. For more details on DNA 

extraction, see 3.2.6. 

5.2.2 16S rRNA qPCR to estimate cell concentration  

16S rRNA qPCR assays were performed in triplicate with 16S rRNA 1055f-1392r 

primers275 and SsoAdvanced Universal SYBR Green Supermix (Bio-Rad) on the 

BioRad CFX C1000 System (Bio-Rad) following thermocycle program: (i) 2 min of 

initial denaturation at 98 ºC, and 40 cycles of (ii) 5 s denaturation and 98 ºC, and (iii) 

5 s annealing/extension at 60 ºC70. DNA samples were diluted to a working solution 

of 5 ng/µL and an internal control DNA (gfp_qPCR_f: TCGGTTATGGTGTTCAATGC; 

gfp_qPCR_R: GACTTCAGCACGTGTCTTGTAG) was used as inhibition controls for 

the qPCR. Standard curves of each set of primers were constructed using plasmid 

clones of the target sequences of between 102 and 108 copy numbers, used in 

parallel with each qPCR run. Cell concentration was estimated by dividing the 16S 

rRNA concentration by 4.1, the estimated average 16S rRNA GCN per bacterium199. 

We did not incorporate individual 16S GCN adjustments on the sequencing 

reads137,276 as current correction approaches were found to introduce rather than 

reduce biases277. The resolution of Illumina MiSeq often only allows ASV 

characterisation to genus level, but already within species, 16S GCN can vary widely 

(e.g. 6 to 11 16S GCN for Escherichia coli278).  

5.2.3 High-throughput qPCR to quantify the resistome  

HT-qPCR of ARGs and MGEs was performed using SmartChip Real-Time PCR 

(Wafergen). A total of 296 primer sets (Supplementary Table 8) were used to detect 

283 ARGs (52 β-lactams, 51 non-specific efflux pumps, 46 MLSBs, 39 tetracyclines, 

36 aminoglycosides, 32 vancomycins, 11 others, 9 FCA, 7 sulfonamides), 12 MGEs 

(8 transposases , 4 integrases) and one 16S rRNA gene as previously 

described197,198. For more details on the Ht-qPCR assay and analysis, see 3.2.6.  
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5.2.4 16S rRNA sequencing and bioinformatics 

The hypervariable V4 region 515F-806R279 of the 16S rRNA gene was sequenced on 

the Illumina MiSeq platform with V2 500 cycle chemistry at NU-OMICS, Northumbria 

University, UK. Sample preparation and sequencing followed the Schloss MiSeq Wet 

Lab SOP280 with the only deviation of spiking a 4.5 pM library, as opposed to 4 pM. 

Sequencing included a positive control (mock community, ZymoBIOMICS Microbial 

Community DNA Standard, Zymo Research), negative control (water), and extraction 

control (extracted water). Raw sequences were processed with QIIME2 v.2019.4281. 

Reads were denoised into ASVs with DADA2282,283, assigning ASVs to genus level 

with the SILVA reference database (v 138)284–286. The V4 primer region 515F-806R 

was extracted from the SILVA 138 SSU NR99 dataset to retain more sequences 

within this region as opposed to using primer sequence to find and remove the 

corresponding region in the QIIME2 environment287. The SILVA 138 V4 classifier was 

trained with the machine learning software library scikit-learn v.0.20.0 using Naïve 

Bayes methods (fit-classifier-naive-bayes288) through the feature-classifier plugin289. 

The taxonomy was assigned through the same plugin, using the sklearn-based 

taxonomy classifier (classify-sklearn288). Accounting for MiSeq bleed-through 

between runs290, rare ASVs of less than 0.1% of the mean sample depth were 

removed. The taxonomy and ASV table biom file283 were produced for downstream 

analysis in R200 with the phyloseq (v 1.34.0)291 and vegan (v 2.5-7)292 package. ASVs 

not classified at phylum level were removed, resulting in a total of 2,735 taxa for 38 

samples with minimum 12,712 and maximum 83,570 reads.  

5.2.5 Quantitative and relative microbiome profiling  

For QMP, we rarefied samples to an equal sampling depth (ratio between 

sequencing depth and cell counts (Appendix Figure C-1)) with the R function 

rarefy_even_sampling_depth (seed 711)137. Reads were not corrected for individual 

16S rRNA GCN. The resulting rarefied abundances were multiplied with the 

estimated cell concentration per sample to obtain absolute microbial taxa abundance 

per mL of river water. For RMP, we rarefied sampled to an equal sequencing depth 

of 12,712 (seed 711), resulting in relative microbial abundances.  

5.2.6 Rank-based RMP and QMP comparisons 

We analysed ASV rank order changes between the RMP and QMP approach with 

the rank-biased overlap (RBO) measure and a genus co-occurrence network based 
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on Spearman’s correlation. RBO is a similarity measure on ranked lists, developed to 

measure the expected overlap of indefinite rankings293. RBO does not require every 

item to appear in both rankings, is not tied to a particular prefix length and its top-

weightedness can be adjusted. For the latter, parameter p determines the strength of 

the weighting to top ranks. Raising p increases the depth of comparison, e.g. for 

p = 0.9, p = 0.95 or p = 0.97, 85% of the RBO measure focus on the first ten, first 20 

or first 50 results, respectively293. We calculated RBO on the most abundant 100 

ASVs with p = 0.95 to top-weigh the first 20 results in R with the package gespeR 

(v 1.23.0)294.  

For the co-occurrence patterns, we first removed unclassified or ambiguously defined 

ASVs at genus level and then selected ASVs present in at least 85% of samples 

based on the QMP data (=24 ASVs). The same 24 ASVs were also selected in the 

RMP data. We defined and visualised taxon-taxon associations by Spearman’s 

correlations between pairs of taxa with Benjamini-Hochberg multiple testing 

correction in R with the packages psych (v 2.1.3)215 and corrplot (v 0.84)216.  

5.2.7 Resistome volcano plot 

We assessed the difference in log10 ARG and MGE river water concentrations 

between up- and downstream (S1 to S8) with the Welch’s t-test, applying Benjamini-

Hochberg P adjustment to correct for multiple testing. We plotted the log10 fold 

change against statistical significance in a volcano plot with the R package 

EnhancedVolcano (v 1.8.0)214.  

5.2.8 Network analysis for microbiome and resistome correlations 

We investigated microbiome and resistome co-occurrence by calculating all possible 

pairwise Spearman’s rank correlations among bacterial orders, ARGs and MGEs 

present in the river water samples (n = 38). Only statistically robust correlations with 

Spearman’s ρ > 0.8 and Benjamini-Hochberg multiple testing corrected P < 0.01295 

were included in the network. Network analysis was performed in R with visualisation 

including topological property calculations in Gephi (v 0.9.2)296.  

5.2.9 Hill diversity analysis 

Abundance-based Hill numbers and diversity profiles for RMP and QMP were 

calculated and plotted with the hilldiv R package (v 1.5.1)274. The Sørensen‐type 

overlap dissimilarity measure for q = 1 was used to quantify the effective average 

proportion of nonshared ASVs in the catchment and visualised in a NMDS plot. As 
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the Hill number qD equation265,271 is not defined for q = 1, the R package hilldiv 

calculated qD for this case with q= 0.99999 (Equation 5-1). 

Equation 5-1. Hill number qD equation. 

𝐷
𝑞

=  (∑ 𝑝𝑖
𝑞

𝑆

𝑖=1
)

1/(1−𝑞)

  

𝐷
𝑞

:  Hill number 

𝑞:  Order of diversity 
𝑆:  Species richness 
𝑝𝑖:  Proportional abundance of species i 
 

5.2.10 Statistical analysis and graphics 

Raw amplicon sequencing data that support the findings of this study have been 

deposited in European Nucleotide Archive with study accession number 

PRJEB42314. All other data can be accessed through the Center for Open Science 

repository, OSF ((Ott, Amelie. 2021. 'Monitoring and Modeling of Antibiotic 

Resistance in Southeast Asian Rivers. 

https://osf.io/gcpky/?view_only=90e614c2c6b64483aa503694af113789). 

We performed all statistical analysis in R (v 4.0.5)200. We composed graphics using 

ggplot2 (v 3.3.3)201 with finalisations in Inkscape (v 1.0.2)202 except for where stated 

differently. The Skudai catchment map was composed in ArcGIS (v 10.6.1)203. To 

assess statistically significant difference in microbiomes and resistomes between 

upstream (S1) and downstream (S8), we tested for normality with the Shapiro-Wilk 

test, followed by comparisons with the Welch’s-test209. Effect size was measured with 

Cohen’s D with the R package effsize (v 0.8.1)211. Box-plot elements are defined as 

centre line (median), box limits (upper and lower quartiles), whiskers (1.5x 

interquartile range) and points (outliers). 

5.3 Results 

5.3.1 Relative and absolute microbial taxa abundances 

For this study, we collected river water samples in a Malaysian rural-to-urban 

catchment from eight sampling points over five field trips in different seasons. A 

previous study for this catchment found no large statistically significant seasonal 

effects for water quality and resistome data (see Chapter 3). Consequently, mean 

concentrations with standard deviations are reported per sampling point across 

seasons. We estimated river water cell concentrations with 16S rRNA qPCR, 
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correcting for multiple 16S rRNA gene copies per cell. In the catchment, cell counts 

varied more than 100-fold across samples with mean upstream concentrations of 

(9 ± 3) x 105 cells/mL (S1) and mean downstream concentrations of 

(2 ± 1) x 107 cells/mL (S8) (Appendix Figure C-1).  

River water microbiomes were assessed by 16S rRNA sequencing with Illumina 

MiSeq, classifying ASVs to genus level. After data quality filtering, reads varied from 

12,712 to 83,570 (median 28,187, Appendix Figure C-1). Sampling depth (i.e., 

reads/cell count) was highest in upstream samples (S1; mean 3.4%), with lower 

sampling depths obtained elsewhere in the catchment (mean 0.16% - 0.59%, 

Appendix Figure C-1). The lower cell counts upstream resulted in S1 samples being 

21x more intensely sampled in the microbiome analysis than the most downstream 

site, S8 (Appendix Figure C-1). 

 

Figure 5-3. Barplots showing the 20 most abundant ASVs grouped into families with remain pooled into 
'Other' for the relative (RMP; a) and quantitative (QMP; b) microbiome profiling approach, analysing river 
water samples from eight sampling points for two sampling campaigns (March and July 2018, n = 16)). 
See Appendix Figure C-2 for all 38 samples. 

For RMP normalisation, samples were rarefied to equal sequencing depth (i.e., 

number of reads per sample; here 12,712 reads, Appendix Figure C-3). Despite 

known problems297, the RMP approach remains the common practice in 

environmental microbiome research to calculate relative abundances of taxa (Figure 

5-3)298. For QMP137, samples were rarefied to equal sampling depth (here 0.05%) 
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and multiplied with the estimated cell counts per sample to obtain absolute 

abundance of taxa per mL river water (Figure 5-3). In contrast to Vandeputte et al. 

(2017), individual 16S rRNA gene copy number (16S GCN) adjustment was not 

performed because related methods are imprecise, introducing additional bias277.  

The most abundant ASVs (based on QMP, Appendix Table C-1) were 

Cloacibacterium, Acinetobacter, C39 (genus level), and Comamonadaceae (family 

level). When comparing taxa changes across the catchment, the RMP barplot (Figure 

5-3a) provides misleading results. For example, it suggests Comamonadaceae 

decrease as one moves downstream (S1 → S8), whereas when one takes cell 

counts into consideration (Figure 5-3b), Comamonadaceae increases from up- to 

downstream, which might be linked to progressive waste inputs.  

 

Figure 5-4. Co-occurrence patterns for genus detected in at least 85% of the samples based on relative 
(RMP) and quantitative (QMP) microbiome profiling. Pairwise correlations between taxon abundances 
were calculated, and significant correlations (Benjamini-Hochberg adjusted test, P < 0.05) are 
represented by circles, the colour and size of each circle represent the correlation coefficient 
(Spearman’s ρ). f: family. 

As relationships between microbiomes and metadata are often explored using non-

parametric rank-based methods, we assessed whether the ASV rank order was 
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conserved in the QMP vs RMP approaches. Out of the 20 most abundant ASVs 

determined with QMP, 16 also were present in the top 20 ASVs from the RMP 

approach, but only three ASVs were at the same rank order in both listings (Appendix 

Table C-1). Assessing the similarity of the rank order of the 100 most abundant ASVs 

with the rank-biased overlap for top-weightedness293, we found that only 32% of the 

QMP and RMP results were in common (score 0.32 with p = 95, focussing 86% of 

the weight on top 20 ASVs), suggesting the two methods providing different pictures 

of the system - RMP only provides composition, whereas QMP provides composition 

and abundance in tandem.  

Correlation analyses are often used to infer taxon-taxon interactions259. Constructing 

RMP and QMP genus co-occurrence networks (Figure 5-4), we detected a much 

larger number of significant co-varying genus pairs in the QMP than RMP network 

(249 versus 116). The RMP network also was dominated by negative correlations. 

None of the moderate to strong RMP correlations (P < 0.05, Spearman’s ρ -0.5 to -1) 

were detected in the QMP correlation matrix (Figure 5-4). 

5.3.2 Hill numbers for microbial diversity 

Within the Hill framework, microbial diversity can be calculated for subsystems (α-

diversity; the sampling locations), the entire system (γ-diversity; the river catchment), 

and the difference between subsystems (β-diversity; between sampling points), all 

expressed using one unit, the effective number of ASVs271. The importance of 

'richness' (ASV count in a community) and 'evenness' (equality of ASV frequency in a 

community) to the overall diversity can be modulated with the parameter q299. For 

diversity of order zero (q = 0), the Hill number is a ‘richness’ value because it 

becomes insensitive to ASV frequency, which overweighs rare ASVs. At q = 1 

(exponential of Shannon index), ASVs are weighed by their frequency without 

favouring rare or abundant ASVs. For q = 2 (inverse of Simpson index), abundant 

ASVs are overweighted265. While specific q values can be selected to calculate 

diversity, using α-diversities at q = 0, q = 1 and q = 2 together allows one to assess 

the degree of dominance in a community (Appendix Figure C-4). This information can 

be summarized in a 'diversity profile', a graph of diversity versus q, visualising the 

contributions of richness and evenness to a community’s diversity (Figure 5-5). The 

richer a community (higher ASV count), the higher the graph starts, whereas the 

more uneven the community (few dominant ASVs), the steeper the slope of the 

graph265. 
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Figure 5-5. Microbial diversity calculated within the Hill framework across the river catchment. Hill 
diversity plots represent α-diversities per sampling point based on the relative (a) and quantitative (b) 
microbiome profiling approach for varying q values. NMDS Sørensen‐type overlap dissimilarity plot (c) 
is based on β-diversity, calculated for the QMP data with q = 1. Data represented (n=38) for the eight 
sampling points is based on five biological replicates for the main river (S1, S2, S5, S6, S7, S8) and on 
four biological replicates for the tributaries (Se1, M5). 

Microbial diversities at each sampling point in the RMP diversity profile were closely 

aligned, with clearer differentiation seen for the QMP data (Figure 5-5a, b). Both 

approaches showed microbial diversity was lower upstream (S1) than elsewhere in 

the catchment, but spatial differences were smaller using RMP (Appendix Figure 

C-4). This trend also was observed when calculating the Shannon and Simpson 

index (Appendix Figure C-3). Further, γ-diversity of the catchment was higher using 

the RMP versus the QMP approach, but the values for two approaches converged for 

q > 0. For RMP, γ-diversity in effective numbers of ASVs was 2721 (q = 0), 338 

(q = 1) and 96 (q = 2) and for QMP, the values were 2428 (q = 0), 328 (q = 1) and 96 

(q = 2). 

Results from the RMP and QMP approach differed most in their diversity calculations 

for the least impacted upstream sampling point S1 (mean difference α at q =0  was 

272 effective number of ASVs, Appendix Figure C-4) with the QMP approach better 

correcting for varying sampling depths (Appendix Figure C-1), thus avoiding 'over-

sequencing'. For the QMP approach (Figure 5-5b), the upstream microbial 

community (S1) was significantly less diverse for q = 0 and q = 1 than the farthest 

downstream (S8) (Welch’s t-test with P < 0.05 and large Cohen’s D effect size < -0.8, 

Appendix Table C-2). At S1, the microbial community also was more even than at 

any other sampling point downstream (Figure 5-5b).  

Comparing the α-diversities for the tributaries Se1 and M5 (Appendix Figure C-4) 

further shows the benefit of reporting Hill numbers at varying q values. While the 

tributaries have similar diversities at q = 0 (richness), the diversities for q > 0 (taking 
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frequency into account) decrease more rapidly for the heavily polluted M5, showing a 

more uneven microbial community in comparison to the less polluted Se1 (Figure 

5-5b, Appendix Figure C-4). 

Within the Hill framework, dissimilarity matrices are based on β-diversities272,273. We 

used the Sørensen‐type overlap dissimilarity measure for q = 1 to quantify the 

effective average proportion of nonshared ASVs in the catchment274 (Figure 5-5c). 

The NMDS plot shows the changing community structure as one moves from rural 

upstream (S1) to more urbanised downstream (Figure 5-5c). 

5.3.3 Characterising the river resistome 

We quantified the river water resistome by applying high-throughput qPCR with 283 

ARG, eight transposase and four integron primers. In total, 211 ARGs (~75% of 

those assayed) were detected in the river catchment with 70 ARGs (25% of assay) 

shared between all river water samples (n = 38 samples). All 12 MGEs were 

measured at least once in the sample with eight MGEs (75% of assay) shared across 

all samples (n = 38) (Appendix Table C-3). Detected ARGs encoded resistance to 

eight classes of antibiotics, with β-lactam resistance being the most common (45 

detected/52 in the assay) (Appendix Table C-3).  

Summarizing ARGs and MGEs, their detected numbers (number of ARGs or MGEs), 

river water concentrations (log10 ARG or MGE copies/mL) and cell concentrations 

(ARG or MGE copies/cell) all significantly increased from upstream (S1) to 

downstream (S8) (Welch’s t-test with P < 0.05 and large Cohen’s D effect size < -0.8, 

Appendix Table C-4) with the tributaries frequently having the highest ARG and MGE 

concentrations (Appendix Figure C-5, Appendix Table C-5). River water ARG 

concentrations increased more than two log10 steps along the catchment with ARG 

copy numbers per cell increasing from 0.1 copies/cell upstream to 2.2 copies/cell 

downstream (Appendix Figure C-5, Appendix Table C-5).). 

The most abundant ARGs in the catchment encoded resistance against 

sulphonamides (sul2), aminoglycosides (aadA1, aadA2,), β-lactams (blaOXA10) and 

for non-specific efflux pumps (qacEdelta1, qacH) with their mean concentrations 

ranging between 1 x 107 to 2 x 106 gene copies/mL river water (Appendix Table C-6).  
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Figure 5-6. Volcano plot displaying ARG and MGE log10 fold river water concentration changes between 
upstream (S1) and downstream (S8). Statistical significance calculated with the Welch’s t-test, applying 
Benjamini-Hochberg P adjustment. Fold change calculated by subtracting mean ARG or MGE river 
water concentration for S1 (n = 5) from S8 (n = 5). 

To assess the resistome changes along the river, we plotted ARG and MGE log10 

fold river water concentration changes from up- to downstream (S1 to S8) against 

statistical significance in a volcano plot (Figure 5-6). 146 ARG and MGE 

concentrations increased significantly at least 10-fold between up- and downstream 

(Welch’s t-test, Benjamini-Hochberg adjusted P < 0.05). Four ARGs encoding for 

aminoglycoside, MLSB and tetracycline resistance and integron 3 increased more 

than four log10 steps from up- to downstream (Figure 5-6).  

5.3.4 Network analysis of microbiomes and resistomes  

Network analysis has been proposed to explore the associations between 

microbiomes and resistomes, but to date, such networks have been either based on 

relative values134 or semi-quantitative data (relative NGS data for microbiomes and 

absolute HT-qPCR for resistomes135, see Figure 5-7a). Combining QMP (rather than 

RMP) with HT-qPCR data allows one to more fully compose the quantitative 

networks (Figure 5-7b), overcoming negative correlation biases and spurious 

associations reported for relative abundance co-occurrence networks136. Based on 

the absolute taxa abundance data, the QMP network had a higher number of nodes 

and edges with a higher average node connectivity (=average degree) than the RMP 

network (Figure 5-7, Appendix Table C-7). While for the QMP network, 36 taxa at 

order level had strong correlations (Spearman’s ρ > 0.8 and P < 0.01) with at least 
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three other nodes, this was only the case for 13 taxa in the RMP network (Figure 5-7, 

Appendix Table C-7).  

 

Figure 5-7. Network analysis based on relative (RMP; a) and quantitative (QMP; b) microbiome profiling, 
revealing co-occurrence patterns among ARGs (blue circles), MGEs (red and orange circles) and taxa 
at order level (green circles). A connection represents a strong (Spearman’s ρ > 0.8) and significant 
(P < 0.01, adjusted with Benjamini Hochberg) correlation. The size of each node is proportional to the 
number of connections (=degree). Only nodes with at least three other connections are shown. 

For the QMP network, the most connected ARGs, transposases, and integrons were 

blaOXA10 (152 degrees), tnpA 02 (147 degrees) and clinical integron 1 (clintl1; 146 

degrees), respectively (Figure 5-7b). The most correlating taxa belonged to the order 

of Burkholderiales (141 degrees), Flavobacteriales (135 degrees) and 

Campylobacterales (134 degrees), indicating that these bacteria might be frequent 

hosts of ARGs, and/or that these bacteria came from a similar source to the ARGs 

and MGEs (Figure 5-7b). While these correlations do not replace further monitoring, 

they help in hypothesis formulation, addressing better-grounded research 

questions259.  
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5.4 Discussion 

Our understanding of complex environmental microbiomes has been hindered by 

overly relying on relative abundance data and inconsistent definitions of diversity in 

describing microbial changes. This hampers the ability of environmental researchers 

to reliably link microbiome and resistome changes in the investigation of AR fate and 

spread, and other practical questions255, such as providing quantitative data for 

QMRAs – a crucial knowledge gap for assessing environmental AR exposure risk. 

To date, few papers have reported absolute taxa abundances262,276,300 and, to our 

knowledge, only one human study137 used rarefaction to make sampling depths 

equal prior to multiplying the relative taxa abundances with cell concentrations. While 

this normalisation step removes sequencing information for 'over-sequenced' 

samples (here upstream S1), it is necessary to allow a reliable comparison of 

microbial diversity, especially when cell counts vary widely across samples (here 

100-fold). Only after sampling depth correction in QMP, did we find diversity to have 

increased significantly in the catchment from rural up- to urban downstream; a critical 

observation was not possible using the RMP approach. 

Despite environmental QMP not addressing all known biases in microbiome 

research, it allows more accurate and easier absolute quantification of microbiota 

variation. In environmental studies, cell counts are routinely measured and QMP can 

be conducted at no extra cost, requiring little bioinformatic workflow adjustments. In 

this study, absolute taxa abundance data allowed to explore environmental 

microbiome and resistome interactions, overcoming biases related to relative taxa 

abundance data.  

Researchers can choose between several methods to estimate cell counts for 

absolute taxa abundance calculation, such as 16S rRNA qPCR276 (as applied here) 

or flow cytometry137,262. Flow cytometry protocols are available for almost all 

environmental compartments (e.g. wastewater301, biofilms302 or seawater303) to 

optimise cell detection. However, a qPCR method quantifying the same product as 

NGS might reduce bias of using different methods (flow cytometry of cells vs. qPCR 

of 16S rRNA). Ideally, the same primer region should be targeted to estimate cell 

counts and assess the microbiome. Recent advances now also allow the 

quantification of viable cells with digital PCR304,305.  
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Diversity has been defined in so many different ways that its ability to transfer 

accurate information on microbial community changes, e.g. due to human impact, is 

compromised266. Jost and Chao (2020) introduced the analogy that diversity indices 

(e.g. Shannon or Simpson index) are connected to diversity in the same manner as a 

sphere’s diameter is connected to its volume. While the diameter is an index of the 

sphere’s volume, it is not the volume itself. They state that using the diameter instead 

of volume in engineering calculations would result in chaos, but this is what biologists 

are currently doing with diversity indices299. Shannon and Simpson index are useful 

diversity indices with an important role in ecology, but their values provide 

information on uncertainty and probability, respectively, rather than measuring 

diversity265. The Hill number framework provides a better and more unified approach 

to calculate and compare microbial diversities across environmental compartments, 

especially where the parameter q can be used to modulate the sensitivity towards 

abundant versus rare ASVs.  

Depending on the study purpose, scientists might choose to calculate Hill numbers 

for several q for an in-depth diversity analysis (as performed here) or for one q value 

only. To define a core microbiome or when rare ASVs are considered untrustworthy 

due to technical bias (e.g. PCR or sequencing errors), q = 2 could be chosen to put 

more weight on abundant ASVs and results could be interpreted as effective number 

of dominant ASVs in the system267,271. In contrast, when the rarest ASVs are as 

important as the most abundant ASVs, for example for conservation purposes, q = 0 

could be chosen271. The recently published R hilldiv package274 enables DNA-based 

diversity calculations with Hill numbers. 

In this study, we observed an increase in diversity and decrease in evenness along 

the river from a less polluted upstream to a more polluted downstream. 

Environmental AR increased along the river as indicated by the enrichment of ARGs 

and MGEs. The ARG concentrations measured up- and downstream in this 

Malaysian catchment are comparable to levels previously reported for two Chinese 

rivers, using the same HT-qPCR assay135,225. The downstream ARG concentrations 

in this study and Peng et al. (2020) are in the same range as HT-qPCR ARG 

concentrations reported for effluents from a Spanish and Chinese wastewater 

treatment plant70,226.  

The increase in diversity, together with the increasing levels of cell counts, ARGs and 

MGEs in this rural-to-urban catchment are likely caused by insufficiently treated 
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sewage entering the river (see Chapter 3). The most abundant ASVs for this 

catchment were Cloacibacterium, Acinetobacter, C39 (genus level) and 

Comamonadaceae (family level), also common in wastewater-impacted water bodies 

in China and India306–308. Comparing co-occurrence networks of absolute taxa with 

absolute ARG and MGE data allowed proposing hypothesis of possible taxa 

harbouring AR to be further investigated in experimental studies.  

This study shows the straightforward and easy implementation of a quantitative 

microbial profiling approach and intuitive diversity characterisation with Hill numbers 

is superior to RMP approaches. We recommend our new combined approach 

become the norm for future environmental microbiome (and resistome) research, 

especially to underpin improved QMRAs. Only when such methods are employed will 

environmental AR studies become more quantitative and truly comparable.  
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Chapter 6. Conclusions and recommendations 

6.1 Conclusions 

AR is a global threat but the extend and implications are larger for LMICs. In LMICs, 

a combination of weak healthcare systems, a high prevalence of over-the-counter 

antibiotic sales, lacking sanitation and insufficiently treated waste accelerate the 

spread of diseases and AR. For the later, contaminated waters can enrich the 

environmental resistome, posing a health risk to locals relying on surface waters for 

fishing, washing clothes and irrigation. The WHO has proposed SE Asia as a hotspot 

for AR. In particular, clinical β-Lactam resistance is spreading in many SE Asian 

countries, including in Malaysia. Malaysia, the study site here, has one of the 

strongest, fastest-growing economies in SE Asia which has allowed more Malaysians 

to access healthcare, including antibiotics. Despite the majority of AR burden falling 

on LMICs, most environmental AR monitoring data sets are only available for HICs 

as the required field work is resource- and time-intensive.  

Comprehensive environmental AR exposure assessments are crucial to investigate 

links between environmental and human health, and ultimately understand which 

types of exposure translate into health consequences. One Health thinking about AR 

is crucial to effectively reduce increasing numbers of deaths and disabilities caused 

by infections with AR pathogens in Malaysia and elsewhere. Where sporadic 

environmental AR data exists, it is difficult to translate findings from one study to 

other regions and even within the same region across seasons. Modelling represents 

an efficient, cost-effective tool for LMICs to identify AR hotspots in rivers and propose 

engineering and/or social interventions. However, while many watershed models 

exist, no standardised, hydrological model yet includes an AR component. 

Conversely, many LMICs, including Malaysia, operate long-standing national river 

monitoring programmes, but these do not capture AR either. To address AR in 

surface waters in LMICs, novel cost-effective monitoring is required to develop 

predictive models that can ultimately, guide policy such as deciding where to improve 

existing or build new wastewater treatment plants. 
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Figure 6-1. Graphical abstract describing the thesis concept.  

Six main tasks were fulfilled by the work presented in Chapters 3-5.  

1. Perform a comprehensive spatial and seasonal assessment of water quality 

and AR conditions in a Southeast Asian river catchment 

Pinpointing environmental AR hotspots in LMICs is hindered by a lack of available 

and comparable AR monitoring data relevant to such settings. Addressing this 

problem, a comprehensive spatial and seasonal assessment of water quality and AR 

conditions in the Malaysian Skudai river catchment was performed to identify 

potential 'simple' surrogates that mirror elevated AR. Screening as conducted for β-

lactam resistant coliforms, 22 antibiotics, 287 AR genes and integrons, and routine 

water quality parameters, covering absolute concentrations and mass loadings at 

eight sampling points across five sampling trips (n = 38).  

Water quality conditions in the catchment were characterised by generally low DO, 

high COD and very high NH3-N concentrations based on national Malaysian 

thresholds. Overall, water quality generally declined, and environmental AR levels 

increased as one moved downstream the catchment without major seasonal 

variations, except total antibiotic concentrations that were higher in the dry season 

(Cohen's D > 0.8, paired t-test, P < 0.05). Out of 14 measured antibiotics, only 

amoxicillin (all samples mean 510 ± SD 906 ng/L; max 3336 ng/L), and ciprofloxacin 

(all samples mean 131 ± SD  162 ng/L; max 705 ng/L) were detected above PNEC 

values. All ciprofloxacin and 50% of amoxicillin measurements in the dry season 

exceeded the PNEC thresholds.  

Across the catchment, we observed an approximately one log10 difference between 

total coliform > ESBL coliform > carbapenem resistant coliform, meaning that ~ 10% 
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of total coliform produced ESBL and ~ 1% of total coliform were resistant to 2 µg/mL 

meropenem. ESBL E. coli concentrations increased from upstream (<0.5 − 2) x 101 

CFU/mL to downstream (<0.1 – 5) x 102 CFU/mL.  

211 different ARGs (~75% of assay) were detected in the river catchment with 70 

ARGs (25% of assay) shared between all river water samples. Detected ARGs 

encoded resistance to eight classes of antibiotics, with β-lactam resistance being the 

most common (45 genes detected out of 52 assayed). River water ARG 

concentrations increased more than two log10 steps along the catchment with ARG 

copy numbers per cell increasing from 0.1 copies/cell upstream to 2.2 copies/cell 

downstream. 146 ARG and MGE concentrations increased significantly at least 10-

fold between up- and downstream (Welch’s t-test, P < 0.05). Four ARG 

concentrations encoding for aminoglycoside, MLSB and tetracycline resistance and 

integron 3 increased more than 1000-fold from up- to downstream.  

The increase in ARG diversity was most apparent in the headwaters of the river. 

Movement from the rural (S1) to semi-urban (S2) locale added over 40 additional 

genes, many associated with faecal matter and multidrug resistance, such as 

blaCTX-M and vanA. 

This study provides one of the most comprehensive assessments of relationships 

between 'routine' water quality monitoring data and AR markers in a river catchment 

in a LMIC. Understanding environmental AR exposures in LMICs such as Malaysia is 

crucial to holistically tackle AR to protect humans, animals and the environment.  

2. Characterise water quality systematically by assessing both, pollutant 

concentration and pollutant mass loading data 

Discharge and mass loadings are rarely estimated in environmental AR monitoring 

studies. However, this thesis shows that both concentration and load provide 

valuable complementary information to understand the processes occurring in a river 

catchment. 

Mass loading data showed much greater transport of chemical and microbial 

pollutants along the Skudai river from the rural to urban locations. NH3-N 

concentrations increased almost 100-fold from up- to downstream, but increases 

were > 14,000-fold greater based on NH3-N mass loading data. Similarly, total 

coliform, ESBL coliform, carbapenem resistant coliform concentrations increased 
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from up- to downstream 100 – 101-fold while their mass loadings increased 102 – 103-

fold.  

Accounting for volumetric flow is particularly important for countries with dry and wet 

seasons. Comparing total antibiotic concentrations and mass loadings, we 

demonstrate that while antibiotic releases into the catchment likely do not vary across 

seasons for this catchment, reduced rainfall during the dry season resulted in 

increased river antibiotic concentrations and consequently, augmented exposure. 

Seasonality is expected to have a much larger effect on water quality/AR parameters 

in other SE Asian regions with more pronounced dry/wet seasons than here for 

southern peninsular Malaysia.  

Measuring discharge in AR river studies is also crucial to allow a better use of these 

datasets for future AR watershed models. 

3. Introduce standardised 'effect sizes' to better understand relationships for 

AR monitoring and improve comparability of field studies 

Given the limited available environmental AR data in LMICs, results need to be 

reported in a consistent way to allow comparison to other studies and potential 

extrapolation to regions with no data. This thesis presented and applied a better way 

of determining significant effects in environmental AR studies. This was based on 

using 'standardised effect sizes' (here Cohen's D), rather than just P values, which 

not only determines whether significant differences exist between samples over 

space or time, but also weighs the scale of differences.  

Using volcano plots provides an easy way to visualise seasonal and spatial effects 

together with P values to compare different water quality and AR parameters. For 

concentration data, the largest statistically significant spatial effects (up vs. 

downstream) were observed for ARG, MGE and DO concentrations (Cohen's D 15.6, 

-6.85, -6.5, respectively at Welch’s t-test P < 0.05). Spatial effects were even larger 

for all parameters based on their mass loadings than concentrations. 

To the best knowledge, this is the first study to apply the principle of standardised 

effect sizes to AR/river water quality monitoring. Effect sizes are easy to calculate 

and, unlike P values, provide a comparison independent of sample size. Moving 

forward, researchers are encouraged to routinely report effect sizes together with P 

values. This would allow comparison of studies different settings with different 

variables, which is especially critical for data scare LMICs.  
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4. Identify potential 'simple' water quality surrogates that mirror elevated AR 

Limited data and expensive AR detection methods hinder LMICs to identify 

environmental sites of greatest AR concern. The aim of this study was to identify 

'simple' easy-to-measure water quality surrogates that would aid monitoring and 

modelling of AR in locations with limited data. 

For the Skudai catchment, the study found DO (Spearman’s ρ 0.81, P < 0.05) and 

NH3-N (Spearman’s ρ 0.83, P < 0.05) to exhibit the strongest correlations with high 

total ARG concentrations. In this catchment, lower DO and higher NH3-N are likely 

associated with insufficiently treated sewage entering the river, which is probably 

also the major route for ARGs entering the river.  

Interestingly, within the AR indicators, total antibiotic concentrations exhibited the 

lowest correlations with other AR parameters. The weaker correlation of total 

antibiotics with the other AR parameters might be due to the fact that many 

antibiotics quickly degrade in the environment while some ARGs and ARBs persist 

for longer. This is not to say that low levels of antibiotics are incapable of influencing 

ARG selection in aquatic systems, but data here suggest untreated sewage inputs 

have much greater impact than in situ antibiotics on AR in catchments like the 

Skudai. 

This study shows that simple water quality markers, like DO and NH3-N, can be 

valuable surrogates for local stakeholders to identify AR hotspots in rivers and 

propose social and/or engineering interventions. This does not mean that they are 

universally applicable, such as near major non-sewage organic waste inputs. 

However, DO and NH3-N clearly mirror sewage, which often dominates ARG and AR 

bacteria inputs, especially in LMIC rivers. DO and NH3-N also are inexpensive to 

measure, exist in many numerical water quality models and already exist in current 

monitoring programmes. 

This study provides a comprehensive picture of environmental exposures, including a 

surrogate way of identifying locations of potential increased exposure (i.e., exposure 

hot spots). This provides a strong starting point for One Health as part of the health 

protection system for Malaysia. 

5. Utilise national water quality datasets and existing surface water quality 

models to estimate AR fate with 'simple' AR surrogates 
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Most LMICs do not have the resources to perform extensive field monitoring to 

identify AR hotspots. This thesis hypothesised that if one could link water quality 

markers often measured in regular national sampling programs and determine their 

relative value as surrogates for AR, one could massively expand the capacity of 

LMICs to identify points of intervention for AR mitigation. Surrogates would be 

especially valuable if they were amenable to numerical catchment modelling, which 

could extend predictions to places with limited or no data at all.  

The field study found DO and NH3-N to mirror ARG levels in the Skudai catchment. 

The DO and NH3-N data also aligned well with the long-term national Malaysian 

dataset for the Skudai, suggesting correlations between these and AR markers could 

be used to extend existing Malaysian datasets to AR prediction.  

A crude simple linear regression approach was able to well predict coliform 

concentrations with statistical significance, solely based on NH3-N levels. This clear 

relationships between abiotic and biotic factors suggests that a hydrological model 

such as HSPF should be able to predict ARG concentrations based on DO or NH3-N 

concentrations. HSPF is well suited to incorporate an environmental AR element as it 

allows to simulate plenty of hydrological and water quality processes, describing 

point and diffuse pollution sources.  

A Skudai HSPF model up well captured seasonality of river flows and DO together 

with inter annual variability up to 2015. The intension was to expand the Skudai 

HSPF model to 2018, matching the available field AR data, but data issues due to 

incomplete flow record access delayed model development. Nevertheless, the 

concept to simulate ARG through a DO surrogate was demonstrated with a linear 

regression model. By capturing key hydrological and water quality processes, 

catchment models such as HSPF will further improve AR simulations via abiotic 

surrogates.  

Such surrogate-based predictive monitoring approaches will not substitute for 

detailed local analysis, but they can be used to triage catchments for limited 

expense, allowing LMICs to focus resources on AR studies on places with potentially 

greater exposure risk.  
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6. Introduce quantitative microbiome profiling and unified Hill number 

diversities to enhance environmental microbiome and resistome research 

by providing more quantitative and representative data analyses 

Understanding environmental microbiomes and AR is hindered by over reliance on 

relative abundance data from next-generation sequencing. Relative microbiome 

profiling (RMP) limits our ability to quantify changes in microbiomes and resistomes 

over space and time because sequencing depth and cell counts are not considered. 

Analysing relative abundance data using inappropriate statistical tools can yield up to 

100% false detection rates and their application contributes to a general lack of 

reproducibility among microbiome studies.  

This study combined quantitative microbiome profiling (QMP; parallelisation of 

amplicon sequencing and 16S rRNA qPCR to estimate cell counts) and absolute 

resistome profiling (based on high-throughput qPCR) to quantity AR along the 

anthropogenically impacted Skudai river. It was shown that QMP overcomes biases 

caused by relative taxa abundance data. Assessing the similarity of the rank order of 

the 100 most abundant ASVs, only 32% of the QMP and RMP results were found to 

be in common (score 0.32 with p = 95, focussing 86% of the weight on top 20 ASVs), 

suggesting the two methods providing different pictures of the system - RMP only 

provides composition, whereas QMP provides composition and abundance in 

tandem. Correlation analyses are often used to infer taxon-taxon interactions. 

Constructing RMP and QMP genus co-occurrence networks, a much larger number 

of significant co-varying genus pairs were detected in the QMP than RMP network 

(249 versus 116). The RMP network was dominated by negative correlations. None 

of the moderate to strong RMP correlations (P < 0.05, Spearman’s ρ -0.5 to -1) were 

detected in the QMP correlation matrix. In environmental studies, cell counts are 

routinely measured and QMP can be conducted at no extra cost, requiring little 

bioinformatic workflow adjustments. The study contends that environmental 

researchers should use QMP instead of RMP to represent a more accurate picture of 

relationships between microbiomes and metadata (such as ARG concentrations) and 

guide future quantitative microbiological risk assessment (QMRA) applications. With 

these methods, QMRAs will become more precise and researchers might finally 

provide legitimate predictions of AR exposure in environmental settings.  

The study also shows the benefits of using unified Hill number diversities to 

characterise environmental microbial communities. In this study, an increase in 
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diversity and decrease in evenness was observed along the river from less polluted 

upstream to more polluted downstream. The thesis also introduced diversity profiles 

to visualise the contributions of richness and evenness to a community's diversity. 

Characterising and comparing anthropogenic impacts on environmental microbiomes 

is generally hindered by the use of varying microbial diversity indices across studies. 

For a more meaningful quantification, 'diversity' needs to be unambiguously defined 

and applied in microbiome research. Hill numbers provide a statistical framework that 

unifies and generalizes popular indices, and are intuitive and flexible enough to 

address a wide range of scientific questions.  

6.2 Recommendations for future work 

1. A One Health approach is required to tackle AR in SE Asia and elsewhere. This 

study contributes through a comprehensive assessment of environmental AR 

exposure to provide a better platform for developing links between human and 

environmental health. In the future, more research is needed to understand which 

types of exposure lead to health consequences.  

2. This study demonstrates a surrogate way of identifying locations of potential 

increased AR exposure. Future work should evaluate the applicability of easy-to-

measure surrogates such as DO and NH3-N in other catchments in Malaysia and 

SE Asia. More in-depth AR field studies are required to validate the use of 

existing national water quality datasets to predict AR hotspots. Collaborations with 

local stakeholders are crucial to identify the most applicable surrogate(s) for 

specific regions.  

3. The modelling of AR at the catchment scale is in its infancy. There are issues with 

determining which processes need to be incorporated and how much detail, and 

how uncertainty can be quantified. This study contributes to the database that can 

be used for future model development and validation through the provision of 

open access data sets. However, there is an urgent need, if progress is to be 

made, for additional data sets to be collected. This should not only consider 

concentrations, but also river flow to allow calculation of mass loading.  

4. Realistic QMRA is needed to quantify true risks of environmental AR exposures. 

This study shows the straightforward implementation of quantitative microbiome 

and resistome profiling to provide the required quantitative data for QMRAs. This 

new combined approach is recommended for future environmental microbiome 

(and resistome) research, especially to underpin improved QMRAs.  
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Figure 6-2. Final Skudai river water sample (S1) collected for this thesis. 
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Appendix A  

 

Appendix Figure A-1. Total coliform (TC), ESBL coliform and carbapenem resistant bacteria 
screened for with 2 µg/mL meropenem (CRB-2) concentrations (a) and mass loadings (b) in the river 
catchment. Data represented is based on four biological replicates for the main river (S1, S2, S5, S6, 
S7, S8) and on three biological replicates for the tributaries (Se1, M5). 

 

 

Appendix Figure A-2. Comparison of high-throughput (HT) qPCR antibiotic resistance gene (ARG) 
concentrations (a) and detections (b; out of 283 ARGs) across different environmental compartments 
(e.g., soil, sewage, river, lake). Selected studies monitored ARG levels in soil (UK 309; China 310), 
wastewater treatment plant (WWTP) influent (Inf) and effluent (Eff) (Spain 70; China 226), river sediment 
upstream (U) and downstream (D) (Spain 70); river water upstream (U) and downstream (D) (China 
135,225; Malaysia – this study) and in lake water phases (China 311). To the best of our knowledge, all 
studies applied the same HT-qPCR assay, screening for 283 ARGs with the same primer sets. For all 
studies, 3/3 technical qPCR replicates had to amplify for a positive result, except for the Spanish study, 
where 2/3 technical qPCR replicates were sufficient for a positive result. For ARG abundance data (a), 
mean concentrations per environmental compartment are reported. For detected ARG (b), mean 
numbers of ARG per environmental compartment and total ARG detected per study are reported.   
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Appendix Table A-1. Sampling point coordinates.  

Sampling point Latitude Longitude 

S1 1°41'05.9"N 103°34'22.0"E 

S2 1°38'58.8"N 103°36'58.1"E 

S5 1°36'22.6"N 103°39'04.5"E 

S6 1°32'54.6"N 103°39'41.8"E 

S7 1°31'11.3"N 103°40'41.4"E 

S8 1°29'57.2"N 103°40'59.0"E 

Se1 1°36'09.3"N 103°38'45.7"E 

M5 1°30'13.5"N 103°38'59.1"E 

 

Appendix Table A-2. Modified water quality classes for Malaysia based on the Malaysian Department 
of Environment (DoE) Water Quality Index (WQI, classifications clean - slightly polluted - polluted) and 
National Water Quality Standards for Malaysia (NWQS, classes I-V, see below). To unify both 
approaches, we translated the thresholds from the five NWQS classes to match the three WQI groups188. 

DoE NWQS Class I Class II Class III Class IV Class V 

Assigned classes (based on DoE WQI) Clean Slightly polluted Polluted 

NH3-N 0.1 0.3 0.9 2.7 >2.7 

BOD 1 3 6 12 >12 

COD 10 25 50 100 >100 

DO 7 5 3 1 <1 

pH 7 6 5 <5 >5 

TSS 25 50 150 300 >300 

WQI 92.7 76.5 51.9 31 >31 

BOD: biochemical oxygen demand. COD: chemical oxygen demand. DO: dissolved oxygen. NH3-N: 

ammonia. TSS: total suspended solids. 

 

Appendix Table A-3. Department of Environment (DoE) data for the Skudai catchment (2018). DoE 
sampling point 3SI09 = S1 and DoE sampling point 3SI05 = S8. 

Sampling point Month DO NH3-N COD 

3SI09 January 7.49 0.11 19 

3SI05 January 1.11 2.21 17 

3SI09 March 9.36 0.05 14 

3SI05 March 0.31 3.21 36 

3SI09 May 6.902 0.11 14 

3SI05 May 1.461 2.66 26 

3SI09 July 7.719 0.07 15 

3SI05 July 3.424 5.51 44 

3SI09 September 6.771 0.14 14 

3SI05 September 1.596 7.42 67 

3SI09 November 7.329 0.1 21 

3SI05 November 4.534 1.02 29 

COD: chemical oxygen demand. DO: dissolved oxygen. NH3-N: ammonia.  
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Appendix Table A-4. Monitored antibiotics (ng/L) in aqueous phase of the Skudai river catchment, 
Malaysia during four sampling campaigns (two March 2018, two July 2018) with n=30. 

Antibiotic class Antibiotic name Abbr. Detected1 DL Min - Max Mean 1 PNEC 2 

β-Lactam 

Meropenem MER 0/30* 1 n.a. n.a. 64 

Cefixime CEFX 0/30 * 1 n.a. n.a. 64 

Ceftazidime CFZ 0/30 * 15 n.a. n.a. 500 

Amoxicillin AMX 24/30 15 <15 - 3336 510 ± 906 250 

Ampicillin AMP 17/30 * 1 <1 - 17 n.a. 250 

Lincosamides 
Clindamycin CLI 30/30 0.02 1 - 4 2 ± 1 1000 

Lincomycin LIN 30/30 0.02 3 - 21 10 ± 5 2000 

Macrolide 

Azithromycin AZT 30/30 0.02 0.1 - 28 8 ± 8 250 

Clarithromycin CLAR 30/30 0.03 0.4 -27 7 ± 7 250 

Dehydrated 

Erythromycin 

ERY-

H2O 
30/30 0.05 3 - 167 54 ± 48 n.a. 

Erythromycin ERY 0/30 * 0.05 n.a. n.a. 1000 

Quinolones/ 

Fluoroquinolones 

Ciprofloxacin CIPX 22/30 0.5 <0.5 - 705 131 ± 162 64 

Enrofloxacin ENFLX 18/30 0.05 <0.5 - 13 2 ± 3 64 

Ofloxacin OFLX 25/30 1 <1 - 13 2 ± 3 500 

Sulfonamides 

Sulfamethazine SMZ 24/30 0.03 <0.03 - 39 5 ± 9 n.a. 

Sulfamethoxazole SMX 27/30 0.05 <0.05 - 1933 181 ± 383 16000 

Tetracyclines 

Chlortetracycline CTC 0/30 * 1 n.a. n.a. n.a. 

Minocycline MIN 0/30 * 10 n.a. n.a. 1000 

Oxytetracycline OXY 0/30 * 7.5 n.a. n.a. 500 

Tetracycline TET 0/30 * 4.5 n.a. n.a. 1000 

Others 
Chloramphenicol CAP 1/30 * 0.3 <0.3 - 8 n.a. 8000 

Trimethoprim TMP 30/30 0.06 2 - 26 10 ± 6 500 

DL: detection limit. n.a.: not available. PNEC: predicted no effect concentration where available107. * no 
mean was calculated as over 40% of values were under detection limit. 1 only calculated for when over 
60% of values were detected2.   
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Appendix Table A-5. Relative SPE recovery with mean and relative standard deviation (RSD) and 
method quantification limit (MQL) for antibiotics in surface water. For antibiotic abbreviations, see 
Appendix Table A-4. 

 

 

 

 

 

 

 

 

 

 

  

Target antibiotics 
Method validation data 

SPE recovery, Mean ± RSD (%) MQL (ng/L) 

AMP 117.0 ± 9.1 1.5 

AMX 106.2 ± 13.4 40 

AZT 103.2 ± 0.8 0.1 

CAP 101.1 ± 4.4 1.0 

CEFX 111.5 ± 9.1 0.3 

CFZ 104.7 ± 8.5 50 

CIPX 97.6 ± 9.7 1.5 

CLAR 99.6 ± 13.8 0.1 

CLI 100.8 ± 4.3 0.1 

CTC 107.7 ± 10.9 3.0 

ENFLX 102.5 ± 14.9 0.5 

ERY 98.3 ± 9.3 0.2 

ERY-H2O 99.7 ± 8.4 0.2 

LIN 101.5 ± 13.1 0.1 

MER 102.7 ± 2.3 4.0 

MIN 85.6 ± 11.4 30 

OFLX 107.1 ± 7.7 0.6 

OXY 109.2 ± 10.6 25 

SMX 100.7 ± 5.7 0.15 

SMZ 103.3 ± 7.6 0.1 

TET 106.3 ± 3.6 15 

TMP 100.2 ± 8.0 0.2 
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Appendix Table A-6. Antibiotic resistant gene (ARG) and mobile genetic element (MGE) primer list for 
high-throughput qPCR.  

Assay ID Forward Primer Reverse Primer Classification Mechanism 

16S rRNA GGGTTGCGCTCGTTGC ATGGYTGTCGTCAGCTCGTG 16S Not applicable 

catA1 GGGTGAGTTTCACCAGTTTTGATT CACCTTGTCGCCTTGCGTATA 

FCA 

deactivate 

catB3 GCACTCGATGCCTTCCAAAA AGAGCCGATCCAAACGTCAT deactivate 

catB8 CACTCGACGCCTTCCAAAG CCGAGCCTATCCAGACATCATT deactivate 

Cfr GCAAAATTCAGAGCAAGTTACGAA AAAATGACTCCCAACCTGCTTTAT deactivate 

cmlA1-01 TAGGAAGCATCGGAACGTTGAT CAGACCGAGCACGACTGTTG efflux 

cmlA1-02 AGGAAGCATCGGAACGTTGA ACAGACCGAGCACGACTGTTG efflux 

cmx(A) GCGATCGCCATCCTCTGT TCGACACGGAGCCTTGGT efflux 

floR ATTGTCTTCACGGTGTCCGTTA CCGCGATGTCGTCGAACT efflux 

qnrA AGGATTTCTCACGCCAGGATT CCGCTTTCAATGAAACTGCAA unknown 

Aac CCCTGCGTTGTGGCTATGT TTGGCCACGCCAATCC 

Aminoglycoside 

deactivate 

aac(6')I1 GACCGGATTAAGGCCGATG 
CTTGCCTTGATATTCAGTTTTTATAA

CCA 
deactivate 

aac(6')-Ib(aka 

aacA4)-02 
CGTCGCCGAGCAACTTG CGGTACCTTGCCTCTCAAACC deactivate 

aac(6')-Ib(aka 

aacA4)-01 
GTTTGAGAGGCAAGGTACCGTAA GAATGCCTGGCGTGTTTGA deactivate 

aac(6')-Ib(aka 

aacA4)-03 
AGAAGCACGCCCGACACTT GCTCTCCATTCAGCATTGCA deactivate 

aac(6')-II CGACCCGACTCCGAACAA GCACGAATCCTGCCTTCTCA deactivate 

aac(6')-Iy GCTTTGCGGATGCCTCAAT 
GGAGAACAAAAATACCTTCAAGGA

AA 
deactivate 

aacA/aphD AGAGCCTTGGGAAGATGAAGTTT 
TTGATCCATACCATAGACTATCTCA

TCA 
deactivate 

aacC CGTCACTTATTCGATGCCCTTAC GTCGGGCGCGGCATA deactivate 

aacC1 GGTCGTGAGTTCGGAGACGTA GCAAGTTCCCGAGGTAATCG deactivate 

aacC2 ACGGCATTCTCGATTGCTTT CCGAGCTTCACGTAAGCATTT deactivate 

aacC4 CGGCGTGGGACACGAT AGGGAACCTTTGCCATCAACT deactivate 

aadA-01 GTTGTGCACGACGACATCATT GGCTCGAAGATACCTGCAAGAA deactivate 

aadA-02 CGAGATTCTCCGCGCTGTA GCTGCCATTCTCCAAATTGC deactivate 

aadA1 AGCTAAGCGCGAACTGCAAT TGGCTCGAAGATACCTGCAA deactivate 

aadA-1-01 AAAAGCCCGAAGAGGAACTTG 
CATCTTTCACAAAGATGTTGCTGTC

T 
deactivate 

aadA-1-02 CGGAATTGAAAAAACTGATCGAA ATACCGGCTGTCCGTCATTT deactivate 

aadA2-01 ACGGCTCCGCAGTGGAT GGCCACAGTAACCAACAAATCA deactivate 

aadA2-02 CTTGTCGTGCATGACGACATC TCGAAGATACCCGCAAGAATG deactivate 

aadA2-03 CAATGACATTCTTGCGGGTATC GACCTACCAAGGCAACGCTATG deactivate 

aadA5-01 ATCACGATCTTGCGATTTTGCT CTGCGGATGGGCCTAGAAG deactivate 

aadA5-02 GTTCTTGCTCTTGCTCGCATT GATGCTCGGCAGGCAAAC deactivate 

aadA9-01 CGCGGCAAGCCTATCTTG CAAATCAGCGACCGCAGACT deactivate 

aadA9-02 GGATGCACGCTTGGATGAA CCTCTAGCGGCCGGAGTATT deactivate 

aadD CCGACAACATTTCTACCATCCTT ACCGAAGCGCTCGTCGTATA deactivate 

aadE TACCTTATTGCCCTTGGAAGAGTTA 
GGAACTATGTCCCTTTTAATTCTAC

AATCT 
deactivate 

aph TTTCAGCAAGTGGATCATGTTAAAAT CCAAGCTGTTTCCACTGTTTTTC deactivate 

aph(2')-Id-02 TAAGGATATACCGACAGTTTTGGAAA 
TTTAATCCCTCTTCATACCAATCCA

TA 
deactivate 

aph(2')-Id-01 TGAGCAGTATCATAAGTTGAGTGAAAAG 
GACAGAACAATCAATCTCTATGGAA

TG 
deactivate 

aph6ia CCCATCCCATGTGTAAGGAAA GCCACCGCTTCTGCTGTAC deactivate 

aphA1(aka kanR) TGAACAAGTCTGGAAAGAAATGCA CCTATTAATTTCCCCTCGTCAAAAA deactivate 

spcN-01 AAAAGTTCGATGAAACACGCCTAT TCCAGTGGTAGTCCCCGAATC deactivate 

spcN-02 CAGAATCTTCCTGAAAAGTTTGATGAA CGCAGACACGCCGAATC deactivate 

str AATGAGTTTTGGAGTGTCTCAACGTA AATCAAAACCCCTATTAAAGCCAAT deactivate 

strA CCGGTGGCATTTGAGAAAAA GTGGCTCAACCTGCGAAAAG deactivate 

strB GCTCGGTCGTGAGAACAATCT CAATTTCGGTCGCCTGGTAGT deactivate 

ampC/blaDHA TGGCCGCAGCAGAAAGA CCGTTTTATGCACCCAGGAA 

β-Lactam 

deactivate 

ampC-01 TGGCGTATCGGGTCAATGT CTCCACGGGCCAGTTGAG deactivate 

ampC-02 GCAGCACGCCCCGTAA TGTACCCATGATGCGCGTACT deactivate 

ampC-04 TCCGGTGACGCGACAGA CAGCACGCCGGTGAAAGT deactivate 

ampC-05 CTGTTCGAGCTGGGTTCTATAAGTAAA CAGTATCTGGTCACCGGATCGT deactivate 

ampC-06 CCGCTCAAGCTGGACCATAC CCATATCCTGCACGTTGGTTT deactivate 

ampC-07 CCGCCCAGAGCAAGGACTA GCTCGACTTCACGCCGTAAG deactivate 

ampC-09 CAGCCGCTGATGAAAAAATATG CAGCGAGCCCACTTCGA deactivate 
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Assay ID Forward Primer Reverse Primer Classification Mechanism 

bla1 GCAAGTTGAAGCGAAAGAAAAGA 
TACCAGTATCAATCGCATATACACC

TAA 
deactivate 

bla-ACC-1 CACACAGCTGATGGCTTATCTAAAA AATAAACGCGATGGGTTCCA deactivate 

blaCMY CCGCGGCGAAATTAAGC GCCACTGTTTGCCTGTCAGTT deactivate 

blaCMY2-01 AAAGCCTCATGGGTGCATAAA ATAGCTTTTGTTTGCCAGCATCA deactivate 

blaCMY2-02 GCGAGCAGCCTGAAGCA CGGATGGGCTTGTCCTCTT deactivate 

blaCTX-M-04 CTTGGCGTTGCGCTGAT CGTTCATCGGCACGGTAGA deactivate 

blaCTX-M-01 GGAGGCGTGACGGCTTTT TTCAGTGCGATCCAGACGAA deactivate 

blaCTX-M-02 GCCGCGGTGCTGAAGA 
ATCGGATTATAGTTAACCAGGTCAG

ATTT 
deactivate 

blaCTX-M-03 CGATACCACCACGCCGTTA GCATTGCCCAACGTCAGATT deactivate 

blaCTX-M-05 GCGATAACGTGGCGATGAAT GTCGAGACGGAACGTTTCGT deactivate 

blaCTX-M-06 CACAGTTGGTGACGTGGCTTAA CTCCGCTGCCGGTTTTATC deactivate 

blaGES GCAATGTGCTCAACGTTCAAG GTGCCTGAGTCAATTCTTTCAAAG deactivate 

bla-L1 CACCGGGTTACCAGCTGAAG GCGAAGCTGCGCTTGTAGTC deactivate 

blaMOX/blaCMY CTATGTCAATGTGCCGAAGCA GGCTTGTCCTCTTTCGAATAGC deactivate 

blaIMP-02 AAGGCAGCATTTCCTCTCATTTT 
GGATAGATCGAGAATTAAGCCACT

CT 
deactivate 

blaIMP-01 AACACGGTTTGGTGGTTCTTGTA GCGCTCCACAAACCAATTG deactivate 

blaOCH GGCGACTTGCGCCGTAT TTTTCTGCTCGGCCATGAG deactivate 

blaOKP GCCGCCATCACCATGAG GGTGACGTTGTCACCGATCTG deactivate 

blaOXA1/blaOXA

30 
CGGATGGTTTGAAGGGTTTATTAT TCTTGGCTTTTATGCTTGATGTTAA deactivate 

blaOXA10-01 CGCAATTATCGGCCTAGAAACT TTGGCTTTCCGTCCCATTT deactivate 

blaOXA10-02 CGCAATTATCGGCCTAGAAACT TTGGCTTTCCGTCCCATTT deactivate 

blaOXY CGTTCAGGCGGCAGGTT GCCGCGATATAAGATTTGAGAATT deactivate 

blaPAO CGCCGTACAACCGGTGAT GAAGTAATGCGGTTCTCCTTTCA deactivate 

blaPER TGCTGGTTGCTGTTTTTGTGA CCTGCGCAATGATAGCTTCAT deactivate 

blaPSE TTGTGACCTATTCCCCTGTAATAGAA TGCGAAGCACGCATCATC deactivate 

blaROB GCAAAGGCATGACGATTGC CGCGCTGTTGTCGCTAAA deactivate 

blaSFO CCGCCGCCATCCAGTA GGGCCGCCAAGATGCT deactivate 

blaSHV-01 TCCCATGATGAGCACCTTTAAA TTCGTCACCGGCATCCA deactivate 

blaSHV-02 CTTTCCCATGATGAGCACCTTT TCCTGCTGGCGATAGTGGAT deactivate 

blaTEM AGCATCTTACGGATGGCATGA TCCTCCGATCGTTGTCAGAAGT deactivate 

blaTLA ACACTTTGCCATTGCTGTTTATGT TGCAAATTTCGGCAATAATCTTT deactivate 

blaVEB CCCGATGCAAAGCGTTATG 
GAAAGATTCCCTTTATCTATCTCAG

ACAA 
deactivate 

blaVIM GCACTTCTCGCGGAGATTG CGACGGTGATGCGTACGTT deactivate 

blaZ 
GGAGATAAAGTAACAAATCCAGTTAGAT

ATGA 
TGCTTAATTTTCCATTTGCGATAAG deactivate 

cepA AGTTGCGCAGAACAGTCCTCTT TCGTATCTTGCCCGTCGATAAT deactivate 

cfiA GCAGCGTTGCTGGACACA GTTCGGGATAAACGTGGTGACT deactivate 

cfxA TCATTCCTCGTTCAAGTTTTCAGA TGCAGCACCAAGAGGAGATGT deactivate 

cphA-01 GCGAGCTGCACAAGCTGAT CGGCCCAGTCGCTCTTC deactivate 

cphA-02 GTGCTGATGGCGAGTTTCTG GGTGTGGTAGTTGGTGTTGATCAC deactivate 

fox5 GGTTTGCCGCTGCAGTTC GCGGCCAGGTGACCAA deactivate 

mecA GGTTACGGACAAGGTGAAATACTGAT 
TGTCTTTTAATAAGTGAGGTGCGTT

AATA 
protection 

NDM1 ATTAGCCGCTGCATTGAT CATGTCGAGATAGGAAGTG deactivate 

pbp CCGGTGCCATTGGTTTAGA AAAATAGCCGCCCCAAGATT protection 

pbp2x TTTCATAAGTATCTGGACATGGAAGAA 
CCAAAGGAAACTTGCTTGAGATTA

G 
protection 

Pbp5 GGCGAACTTCTAATTAATCCTATCCA CGCCGATGACATTCTTCTTATCTT protection 

penA AGACGGTAACGTATAACTTTTTGAAAGA GCGTGTAGCCGGCAATG protection 

intI-1(clinic) = 

clintl1 
CGAACGAGTGGCGGAGGGTG TACCCGAGAGCTTGGCACCCA 

MGEs/  

Integron 

integrase 

intI-1LC (int1) GGCATCCAAGCAGCAAG AAGCAGACTTGACCTGA integrase 

intI2 TGCTTTTCCCACCCTTACC GACGGCTACCCTCTGTTATCTC integrase 

intI3 GCCACCACTTGTTTGAGGA GGATGTCTGTGCCTGCTTG integrase 

IS613 AGGTTCGGACTCAATGCAACA TTCAGCACATACCGCCTTGAT 

MGEs/ 

Transposase 

transposase 

tnpA-01 CATCATCGGACGGACAGAATT GTCGGAGATGTGGGTGTAGAAAGT transposase 

tnpA-02 GGGCGGGTCGATTGAAA GTGGGCGGGATCTGCTT transposase 

tnpA-03 AATTGATGCGGACGGCTTAA TCACCAAACTGTTTATGGAGTCGTT transposase 

tnpA-04 CCGATCACGGAAAGCTCAAG GGCTCGCATGACTTCGAATC transposase 

tnpA-05 GCCGCACTGTCGATTTTTATC GCGGGATCTGCCACTTCTT transposase 

tnpA-07 GAAACCGATGCTACAATATCCAATTT CAGCACCGTTTGCAGTGTAAG transposase 

Tp614 GGAAATCAACGGCATCCAGTT CATCCATGCGCTTTTGTCTCT transposase 

carB GGAGTGAGGCTGACCGTAGAAG ATCGGCGAAACGCACAAA MLSB efflux 
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Assay ID Forward Primer Reverse Primer Classification Mechanism 

ereA CCTGTGGTACGGAGAATTCATGT ACCGCATTCGCTTTGCTT deactivate 

ereB GCTTTATTTCAGGAGGCGGAAT TTTTAAATGCCACAGCACAGAATC deactivate 

erm(34) GCGCGTTGACGACGATTT TGGTCATACTCGACGGCTAGAAC protection 

erm(35) TTGAAAACGATGTTGCATTAAGTCA 
TCTATAATCACAACTAACCACTTGA

ACGT 
protection 

erm(36) GGCGGACCGACTTGCAT TCTGCGTTGACGACGGTTAC protection 

ermA TTGAGAAGGGATTTGCGAAAAG 
ATATCCATCTCCACCATTAATAGTA

AACC 
protection 

ermA/ermTR ACATTTTACCAAGGAACTTGTGGAA GTGGCATGACATAAACCTTCATCA protection 

ermB TAAAGGGCATTTAACGACGAAACT 
TTTATACCTCTGTTTGTTAGGGAAT

TGAA 
protection 

ermC TTTGAAATCGGCTCAGGAAAA ATGGTCTATTTCAATGGCAGTTACG protection 

ermF CAGCTTTGGTTGAACATTTACGAA AAATTCCTAAAATCACAACCGACAA protection 

ermJ/ermD GGACTCGGCAATGGTCAGAA CCCCGAAACGCAATATAATGTT protection 

ermK-01 GTTTGATATTGGCATTGTCAGAGAAA ACCATTGCCGAGTCCACTTT protection 

ermK-02 GAGCCGCAAGCCCCTTT GTGTTTCATTTGACGCGGAGTAA protection 

ermT-01 
GTTCACTAGCACTATTTTTAATGACAGAA

GT 

GAAGGGTGTCTTTTTAATACAATTA

ACGA 
protection 

ermT-02 GTAAAATCCCTAGAGAATACTTTCATCCA 
TGAGTGATATTTTTGAAGGGTGTCT

T 
protection 

ermX GCTCAGTGGTCCCCATGGT ATCCCCCCGTCAACGTTT protection 

ermY TTGTCTTTGAAAGTGAAGCAACAGT 
TAACGCTAGAGAACGATTTGTATTG

AG 
protection 

ImrA-01 TCGACGTGACCGTAGTGAACA CGTGACTACCCAGGTGAGTTGA efflux 

lnuA-01 TGACGCTCAACACACTCAAAAA TTCATGCTTAAGTTCCATACGTGAA deactivate 

lnuB-01 TGAACATAATCCCCTCGTTTAAAGAT 
TAATTGCCCTGTTTCATCGTAAATA

A 
deactivate 

lnuB-02 AAAGGAGAAGGTGACCAATACTCTGA GGAGCTACGTCAAACAACCAGTT deactivate 

lnuC 
TGGTCAATATAACAGATGTAAACCAGATT

T 
CACCCCAGCCACCATCAA deactivate 

matA/mel TAGTAGGCAAGCTCGGTGTTGA 
CCTGTGCTATTTTAAGCCTTGTTTC

T 
efflux 

mdtA CCTAACGGGCGTGACTTCA TTCACCTGTTTCAAGGGTCAAA efflux 

mefA CCGTAGCATTGGAACAGCTTTT AAACGGAGTATAAGAGTGCTGCAA efflux 

mphA-01 CTGACGCGCTCCGTGTT GGTGGTGCATGGCGATCT deactivate 

mphA-02 TGATGACCCTGCCATCGA TTCGCGAGCCCCTCTTC deactivate 

mphB CGCAGCGCTTGATCTTGTAG TTACTGCATCCATACGCTGCTT deactivate 

mphC CGTTTGAAGTACCGAATTGGAAA GCTGCGGGTTTGCCTGTA deactivate 

msrA-01 CTGCTAACACAAGTACGATTCCAAAT 
TCAAGTAAAGTTGTCTTACCTACAC

CATT 
efflux 

msrC-01 TCAGACCGGATCGGTTGTC 
CCTATTTTTTGGAGTCTTCTCTCTA

ATGTT 
efflux 

oleC CCCGGAGTCGATGTTCGA GCCGAAGACGTACACGAACAG efflux 

pikR1 TCGACATGCGTGACGAGATT CCGCGAATTAGGCCAGAA protection 

pikR2 TCGTGGGCCAGGTGAAGA TTCCCCTTGCCGGTGAA protection 

vatB-01 GGAAAAAGCAACTCCATCTCTTGA TCCTGGCATAACAGTAACATTCTGA deactivate 

vatB-02 TTGGGAAAAAGCAACTCCATCT CAATCCACACATCATTTCCAACA deactivate 

vatC-01 CGGAAATTGGGAACGATGTT GCAATAATAGCCCCGTTTCCTA deactivate 

vatC-02 CGATGTTTGGATTGGACGAGAT GCTGCAATAATAGCCCCGTTT deactivate 

vatE-01 GGTGCCATTATCGGAGCAAAT TTGGATTGCCACCGACAAT deactivate 

vatE-02 GACCGTCCTACCAGGCGTAA TTGGATTGCCACCGACAATT deactivate 

vgaA-01 CGAGTATTGTGGAAAGCAGCTAGTT CCCGTACCGTTAGAGCCGATA efflux 

vgaA-02 GACGGGTATTGTGGAAAGCAA 
TTTCCTGTACCATTAGATCCGATAA

TT 
efflux 

vgb-01 AGGGAGGGTATCCATGCAGAT ACCAAATGCGCCCGTTT deactivate 

vgbB-01 CAGCCGGATTCTGGTCCTT TACGATCTCCATTCAATTGGGTAAA efflux 

vgbB-02 ATACGAGCTGCCTAATAAAGGATCTT TGTGAACCACAGGGCATTATCA deactivate 

acrA-01 CAACGATCGGACGGGTTTC TGGCGATGCCACCGTACT 

Non-specific 

efflux 

acrA-02 GGTCTATCACCCTACGCGCTATC GCGCGCACGAACATACC efflux 

acrA-03 CAGACCCGCATCGCATATT CGACAATTTCGCGCTCATG efflux 

acrA-04 TACTTTGCGCGCCATCTTC CGTGCGCGAACGAACAT efflux 

acrB-01 AGTCGGTGTTCGCCGTTAAC CAAGGAAACGAACGCAATACC efflux 

acrR-01 GCGCTGGAGACACGACAAC GCCTTGCTGCGAGAACAAA efflux 

acrR-02 GATGATACCCCCTGCTGTGAGA ACCAAACAAGAAGCGCAAGAA efflux 

adeA CAGTTCGAGCGCCTATTTCTG CGCCCTGACCGACCAAT efflux 

acrA-05 CGTGCGCGAACGAACA ACTTTGCGCGCCATCTTC efflux 

acrF GCGGCCAGGCACAAAA TACGCTCTTCCCACGGTTTC efflux 

ceoA ATCAACACGGACCAGGACAAG GGAAAGTCCGCTCACGATGA efflux 

cmeA GCAGCAAAGAAGAAGCACCAA 
AGCAGGGTAAGTAAAACTAAGTGG

TAAATCT 
efflux 

cmr CGGCATCGTCAGTGGAATT CGGTTCCGAAAAAGATGGAA efflux 
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Assay ID Forward Primer Reverse Primer Classification Mechanism 

emrD CTCAGCAGTATGGTGGTAAGCATT ACCAGGCGCCGAAGAAC efflux 

marR-01 GCGGCGTACTGGTGAAGCTA TGCCCTGGTCGTTGATGA efflux 

mdetl1 ATACAGCAGTGGATATTGGTTTAATTGT TGCATAAGGTGAATGTTCCATGA efflux 

mdtE/yhiU CGTCGGCGCACTCGTT TCCAGACGTTGTACGGTAACCA efflux 

mepA ATCGGTCGCTCTTCGTTCAC ATAAATAGGATCGAGCTGCTGGAT efflux 

mexA AGGACAACGCTATGCAACGAA CCGGAAAGGGCCGAAAT efflux 

mexD TTGCCACTGGCTTTCATGAG CACTGCGGAGAACTGTCTGTAGA efflux 

mexE GGTCAGCACCGACAAGGTCTAC AGCTCGACGTACTTGAGGAACAC efflux 

mexF CCGCGAGAAGGCCAAGA TTGAGTTCGGCGGTGATGA efflux 

mtrC-01 GGACGGGAAGATGGTCCAA CGTAGCGTTCCGGTTCGAT efflux 

mtrC-02 CGGAGTCCATCGACCATTTG ATCGTCGGCAAGGAGAATCA efflux 

mtrD-02 GGTCGGCACGCTCTTGTC TGAAGAATTTGCGCACCACTAC efflux 

mtrD-03 CCGCCAAGCCGATATAGACA GGCCGGGTTGCCAAA efflux 

oprD ATGAAGTGGAGCGCCATTG GGCCACGGCGAACTGA efflux 

oprJ ACGAGAGTGGCGTCGACAA AAGGCGATCTCGTTGAGGAA efflux 

pmrA TTTGCAGGTTTTGTTCCTAATGC GCAGAGCCTGATTTCTCCTTTG efflux 

putative multidrug AATTTTGCCGATTATTGCTGAAA 
GATTGTCATCATTCGTTTATCACCA

A 
efflux 

qac 
CAATAATAACCGAAATAATAGGGACAAG

TT 

AATAAGTGTTCCTAGTGTTGGCCAT

AG 
efflux 

qacA TGGCAATAGGAGCTATGGTGTTT 
AAGGTAACACTATTTTCGGTCCAAA

TC 
efflux 

qacA/qacB TTTAGGCAGCCTCGCTTCA CCGAATCCAAATAAAACCCAATAA efflux 

qacEdelta1-01 TCGCAACATCCGCATTAAAA 
ATGGATTTCAGAACCAGAGAAAGA

AA 
efflux 

qacEdelta1-02 CCCCTTCCGCCGTTGT CGACCAGACTGCATAAGCAACA efflux 

qacH-01 GTGGCAGCTATCGCTTGGAT CCAACGAACGCCCACAA efflux 

qacH-02 CATCGTGCTTGTGGCAGCTA TGAACGCCCAGAAGTCTAGTTTT efflux 

rarD-02 TGACGCATCGCGTGATCT AAATTTTCTGTGGCGTCTGAATC efflux 

sdeB CACTACCGCTTCCGCACTTAA TGAAAAAACGGGAAAAGTCCAT efflux 

tolC-01 GGCCGAGAACCTGATGCA AGACTTACGCAATTCCGGGTTA efflux 

tolC-02 CAGGCAGAGAACCTGATGCA CGCAATTCCGGGTTGCT efflux 

tolC-03 GCCAGGCAGAGAACCTGATG CGCAATTCCGGGTTGCT efflux 

ttgA ACGCCAATGCCAAACGATT GTCACGGCGCAGCTTGA efflux 

ttgB TCGCCCTGGATGTACACCTT ACCATTGCCGACATCAACAAC efflux 

yceE/mdtG-01 TGGCACAAAATATCTGGCAGTT TTGTGTGGCGATAAGAGCATTAG efflux 

yceE/mdtG-02 TTATCTGTTTTCTGCTCACCTTCTTTT GCGTGGTGACAAACAGGCTTA efflux 

yceL/mdtH-01 TCGGGATGGTGGGCAAT CGATAACCGAGCCGATGTAGA efflux 

yceL/mdtH-02 CGCGTGAAACCTTAAGTGCTT AGACGGCTAAACCCCATATAGCT efflux 

yceL/mdtH-03 CTGCCGTTAAATGGATGTATGC ACTCCAGCGGGCGATAGG efflux 

yidY/mdtL-01 GCAGTTGCATATCGCCTTCTC CTTCCCGGCAAACAGCAT efflux 

yidY/mdtL-02 TGCTGATCGGGATTCTGATTG CAGGCGCGACGAACATAAT efflux 

fabK TTTCAGCTCAGCACTTTGGTCAT AAGGCATCTTTTTCAGCCAGTTC 

Other 

deactivate 

imiR CCGGACTAGAGCTTCATGTAAGC CCCACGCGGTACTCTTGTAAA unknown 

nisB GGGAGAGTTGCCGATGTTGTA AGCCACTCGTTAAAGGGCAAT unknown 

speA GCAAGAGGTATTTGCTCAACAAGA CAGGGTCACCCTCATAAAGAAAA unknown 

bacA-01 CGGCTTCGTGACCTCGTT ACAATGCGATACCAGGCAAAT deactivate 

bacA-02 TTCCACGACACGATTAAGTCATTG CGGCTCTTTCGGCTTCAG deactivate 

fosB TCACTGTAACTAATGAAGCATTAGACCAT 
CCATCTGGATCTGTAAAGTAAAGA

GATC 
deactivate 

fosX 
GATTAAGCCATATCACTTTAATTGTGAAA

G 
TCTCCTTCCATAATGCAAATCCA deactivate 

nimE TGCGCCAAGATAGGGCATA GTCGTGAATTCGGCAGGTTTA unknown 

pncA GCAATCGAGGCGGTGTTC TTGCCGCAGCCAATTCA unknown 

sat4 GAATGGGCAAAGCATAAAAACTTG 
CCGATTTTGAAACCACAATTATGAT

A 
deactivate 

dfrA1 GGAATGGCCCTGATATTCCA AGTCTTGCGTCCAACCAACAG 

Sulfonamide 

deactivate 

dfrA12 CCTCTACCGAACCGTCACACA GCGACAGCGTTGAAACAACTAC deactivate 

folA CGAGCAGTTCCTGCCAAAG CCCAGTCATCCGGTTCATAATC deactivate 

sul1 CAGCGCTATGCGCTCAAG ATCCCGCTGCGCTGAGT protection 

sul2 TCATCTGCCAAACTCGTCGTTA GTCAAAGAACGCCGCAATGT protection 

sulA/folP-01 CAGGCTCGTAAATTGATAGCAGAAG CTTTCCTTGCGAATCGCTTT protection 

sulA/folP-03 CACGGCTTCGGCTCATGT TGCCATCCTGTGACTAGCTACGT protection 

tet(32) CCATTACTTCGGACAACGGTAGA CAATCTCTGTGAGGGCATTTAACA 

Tetracycline 

protection 

tet(34) CTTAGCGCAAACAGCAATCAGT CGGTGATACAGCGCGTAAACT unknown 

tet(35) ACCCCATGACGTACCTGTAGAGA CAACCCACACTGGCTACCAGTT unknown 

tet(36) AGAATACTCAGCAGAGGTCAGTTCCT TGGTAGGTCGATAACCCGAAAAT protection 
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Assay ID Forward Primer Reverse Primer Classification Mechanism 

tet(36) TGCAGGAAAGACCTCCATTACAG 
CTTTGTCCACACTTCCACGTACTAT

G 
protection 

tet(37) GAGAACGTTGAAAAGGTGGTGAA AACCAAGCCTGGATCAGTCTCA unknown 

tetA-01 GCTGTTTGTTCTGCCGGAAA GGTTAAGTTCCTTGAACGCAAACT efflux 

tetA-02 CTCACCAGCCTGACCTCGAT CACGTTGTTATAGAAGCCGCATAG efflux 

tetB-01 AGTGCGCTTTGGATGCTGTA AGCCCCAGTAGCTCCTGTGA efflux 

tetB-02 GCCCAGTGCTGTTGTTGTCAT TGAAAGCAAACGGCCTAAATACA efflux 

tetC-01 CATATCGCAATACATGCGAAAAA AAAGCCGCGGTAAATAGCAA efflux 

tetC-02 ACTGGTAAGGTAAACGCCATTGTC 
ATGCATAAACCAGCCATTGAGTAA

G 
efflux 

tetD-01 TGCCGCGTTTGATTACACA CACCAGTGATCCCGGAGATAA efflux 

tetD-02 TGTCATCGCGCTGGTGATT CATCCGCTTCCGGGAGAT efflux 

tetE TTGGCGCTGTATGCAATGAT CGACGACCTATGCGATCTGA efflux 

tetG-01 TCAACCATTGCCGATTCGA TGGCCCGGCAATCATG efflux 

tetG-02 CATCAGCGCCGGTCTTATG CCCCATGTAGCCGAACCA efflux 

tetH TTTGGGTCATCTTACCAGCATTAA TTGCGCATTATCATCGACAGA efflux 

tetJ GGGTGCCGCATTAGATTACCT TCGTCCAATGTAGAGCATCCATA efflux 

tetK 
CAGCAGTCATTGGAAAATTATCTGATTAT

A 

CCTTGTACTAACCTACCAAAAATCA

AAATA 
efflux 

tetL-01 AGCCCGATTTATTCAAGGAATTG CAAATGCTTTCCCCCTGTTCT efflux 

tetL-02 ATGGTTGTAGTTGCGCGCTATAT ATCGCTGGACCGACTCCTT efflux 

tetM-01 CATCATAGACACGCCAGGACATAT CGCCATCTTTTGCAGAAATCA protection 

tetM-02 TAATATTGGAGTTTTAGCTCATGTTGATG 
CCTCTCTGACGTTCTAAAAGCGTAT

TAT 
protection 

tetO-01 ATGTGGATACTACAACGCATGAGATT TGCCTCCACATGATATTTTTCCT protection 

tetW-01 ATGAACATTCCCACCGTTATCTTT ATATCGGCGGAGAGCTTATCC protection 

tetPA 
AGTTGCAGATGTGTATAGTCGTAAACTAT

CTATT 

TGCTACAAGTACGAAAACAAAACTA

GAA 
efflux 

tetPB-01 ACACCTGGACACGCTGATTTT ACCGTCTAGAACGCGGAATG protection 

tetPB-02 TGATACACCTGGACACGCTGAT CGTCCAAAACGCGGAATG protection 

tetPB-03 TGGGCGACAGTAGGCTTAGAA 
TGACCCTACTGAAACATTAGAAATA

TACCT 
protection 

tetPB-05 CTGAAGTGGAGCGATCATTCC CCCTCAACGGCAGAAATAACTAA protection 

tetQ CGCCTCAGAAGTAAGTTCATACACTAAG TCGTTCATGCGGATATTATCAGAAT protection 

tetR-02 CGCGATAGACGCCTTCGA TCCTGACAACGAGCCTCCTT efflux 

tetR-03 CGCGATGGAGCAAAAGTACAT AGTGAAAAACCTTGTTGGCATAAAA efflux 

tetS TTAAGGACAAACTTTCTGACGACATC TGTCTCCCATTGTTCTGGTTCA protection 

tetT CCATATAGAGGTTCCACCAAATCC 
TGACCCTATTGGTAGTGGTTCTATT

G 
protection 

tetU-01 GTGGCAAAGCAACGGATTG TGCGGGCTTGCAAAACTATC unknown 

tetV GCGGGAACGACGATGTATATC CCGCTATCTCACGACCATGAT efflux 

tetX AAATTTGTTACCGACACGGAAGTT 
CATAGCTGAAAAAATCCAGGACAG

TT 
unknown 

vanA AAAAGGCTCTGAAAACGCAGTTAT CGGCCGTTATCTTGTAAAAACAT 

Vancomycin* 

protection 

vanB-01 TTGTCGGCGAAGTGGATCA AGCCTTTTTCCGGCTCGTT protection 

vanC-01 ACAGGGATTGGCTATGAACCAT TGACTGGCGATGATTTGACTATG protection 

vanC-02 CCTGCCACAATCGATCGTT CGGCTTCATTCGGCTTGATA protection 

vanC-03 AAATCAATACTATGCCGGGCTTT CCGACCGCTGCCATCA protection 

vanC1 AGGCGATAGCGGGTATTGAA CAATCGTCAATTGCTCATTTCC protection 

vanC2/vanC3 TTTGACTGTCGGTGCTTGTGA TCAATCGTTTCAGGCAATGG protection 

vanG ATTTGAATTGGCAGGTATACAGGTTA 
TGATTTGTCTTTGTCCATACATAAT

GC 
protection 

vanHB GAGGTTTCCGAGGCGACAA CTCTCGGCGGCAGTCGTAT protection 

vanHD GTGGCCGATTATACCGTCATG CGCAGGTCATTCAGGCAAT protection 

vanRA-01 CCCTTACTCCCACCGAGTTTT TTCGTCGCCCCATATCTCAT protection 

vanRA-02 CCACTCCGGCCTTGTCATT GCTAACCACATTCCCCTTGTTTT protection 

vanRB GCCCTGTCGGATGACGAA TTACATAGTCGTCTGCCTCTGCAT protection 

vanRC TGCGGGAAAAACTGAACGA CCCCCCATACGGTTTTGATTA protection 

vanRC4 AGTGCTTTGGCTTATCTCGAAAA TCCGGCAGCATCACATCTAA protection 

vanRD TTATAATGGCAAGGATGCACTAAAGT CGTCTACATCCGGAAGCATGA protection 

vanSA CGCGTCATGCTTTCAAAATTC TCCGCAGAAAGCTCAATTTGTT protection 

vanSB GCGCGGCAAATGACAAC TTTGCCATTTTATTCGCACTGT protection 

vanSC-01 ATCAACTGCGGGAGAAAAGTCT TCCGCTGTTCCGCTTCTT protection 

vanSC-02 GCCATCAGCGAGTCTGATGA CAGCTGGGATCGTTTTTCCTT protection 

vanTC-01 CACACGCATTTTTTCCCATCTAG CAGCCAACAGATCATCAAAACAA protection 

vanTC-02 ACAGTTGCCGCTGGTGAAG CGTGGCTGGTCGATCAAAA protection 

vanTE GTGGTGCCAAGGAAGTTGCT CGTAGCCACCGCAAAAAAAT protection 

vanTG CGTGTAGCCGTTCCGTTCTT CGGCATTACAGGTATATCTGGAAA protection 
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Assay ID Forward Primer Reverse Primer Classification Mechanism 

vanWB CGGACAAAGATACCCCCTATAAAG 
AAATAGTAAATTGCTCATCTGGCAC

AT 
protection 

vanWG ACATTTTCATTTTGGCAGCTTGTAC CCGCCATAAGAGCCTACAATCT protection 

vanXA CGCTAAATATGCCACTTGGGATA TCAAAAGCGATTCAGCCAACT protection 

vanXB AGGCACAAAATCGAAGATGCTT GGGTATGGCTCATCAATCAACTT protection 

vanXD TAAACCGTGTTATGGGAACGAA GCGATAGCCGTCCCATAAGA protection 

vanYB GGCTAAAGCGGAAGCAGAAA GATATCCACAGCAAGACCAAGCT protection 

vanYD-01 AAGGCGATACCCTGACTGTCA ATTGCCGGACGGAAGCA protection 

vanYD-02 CAAACGGAAGAGAGGTCACTTACA CGGACGGTAATAGGGACTGTTC protection 

FCA: fluoroquinolone, quinolone, florfenicol, chloramphenicol, and amphenicol ARGs). MLSB: 
macrolide-lincosamide-streptogramin B ARGs. *: For consistency, ARG categories are based on 
previous studies using the same Ht-qPCR assay. However, note that vancomycin is a specific 
antibiotic in the class 'glycopeptide'. The van operon is not confined to resistance to vancomycin and 
confers resistance to most glycopeptide antibiotics.  

Appendix Table A-7. Box-cox transformations prior statistical analysis (significance testing and effect 
size calculations). 

Parameter Transformation 

Physical parameters (river flow) Log10 

Physical parameters (DO) None 

Chemical concentrations (DO, NH3-N, TN, TP) None 

Chemical concentration (COD) Log10 

Chemical mass loadings (NH3-N, TN, TP, COD) Log10 

Coliform concentrations and mass loadings (TC, ESBL coliform, CPB-0.5, CPB-2) Log10 

Total antibiotic concentration and mass loading Log10 

Detected ARGs and MGEs None 

ARG and MGE concentrations and mass loadings Log10 

Normalised ARG and MGE cell concentrations None 

ARGs: antibiotic resistant genes. COD: chemical oxygen demand. CPB: carbapenem resistant 
bacteria. DO: dissolved oxygen. MGEs: mobile genetic elements. NH3-N: ammonia. TC: total coliform. 
TN: total nitrogen. TP: total phosphate.  



 

122 

Appendix Table A-8. Physical parameters per sampling point (mean of biological replicates with 
standard deviations). Data for S1-S8 based on four biological replicates except for flow wet and dry 
season. Data for Se1 and M5 based on three biological replicates except for flow wet and dry season. 
Fold-change calculated by dividing the mean S8 with the mean S1 values. 

 

Flow 

(m3/s) 
Temperature 

(ºC) 
pH  

Conductivity 

(µS/cm) 

DO 

(mg/L) All 

(n= 3-4 per site) 

Wet season 

(n= 1-2 per 

site) 

Dry season 

(n=2 per 

site) 

S1 0.45 ± 0.29 0.59 ± 0.41 0.31 ± 0 27.18 ± 0.52 5.88 ± 0.44 75.53 ± 10.3 7.52 ± 0.5 

S2 1.55 ± 0.96 1.88 ± 1.47 1.19 ± 0.16 27.88 ± 0.98 6.08 ± 0.59 297.78 ± 240.44 4.39 ± 0.62 

S5 11.96 ± 6.47 7.83 ± 2.98 16.15 ± 6.92 27.45 ± 0.95 6.16 ± 0.39 357.25 ± 12.04 2.63 ± 1.05 

S6 6.2 ± 4.16 8.16 ± 1.91 4.24 ± 5.73 28.1 ± 1.19 6.3 ± 0.4 299 ± 61.66 5.35 ± 0.22 

S7 25.38 ± 24.94 
40.39 ± 

30.79 
10.32 ± 2.84 28.12 ± 2.27 6.15 ± 0.35 1306.5 ± 1882.71 2.03 ± 0.59 

S8 82.7 ± 30.66 78.07 ± 50.9 87.02 ± 9.46 28.67 ± 1.69 6.25 ± 0.36 3349.25 ± 4818.75 1.32 ± 0.26 

Se1 2.64 ± 1.4 1.79 3.06 ± 1.68 27.03 ± 0.67 5.62 ± 0.26 97.07 ± 3.76 6.39 ± 0.55 

M5 1.11 ± 0.26 0.81 1.23 ± 0.11 28.8 ± 2.33 6 ± 0.36 317.67 ± 23.29 1.61 ± 2.08 

S8/S1 184 140 281 1 1 44 
0.2 

(S1/S8 = 6) 

DO: dissolved oxygen. 

Appendix Table A-9. Chemical concentrations per sampling point (mean of biological replicates with 
standard deviations). Total antibiotics summarize all antibiotics and antibiotic derivates detected in at 
least 60% of the samples above the detection limit (amoxicillin, ciprofloxacin, sulfamethoxazole, 
dehydrated erythromycin, lincomycin, trimethoprim, azithromycin, clarithromycin, clindamycin, 
sulfamethazine, ofloxacin, enrofloxacin). Data for S1-S8 based on four biological replicates. Data for 
Se1 and M5 based on three biological replicates. Fold-change calculated by dividing the mean S8 with 
the mean S1 values. 

 COD 

(mg/L) 

NH3-N 

(mg/L) 

TN 

(mg/L) 

TP 

(mg/L) 

Total antibiotics 

(mg/L) 

S1 5.8 ± 4.77 0.05 ± 0.03 1.09 ± 0.51 0.43 ± 0.08 0.07 ± 0.05 

S2 10.29 ± 6.46 2.85 ± 1.13 4.8 ± 2 0.95 ± 0.42 1.19 ± 1.67 

S5 20.08 ± 6.92 4.7 ± 1.01 7.59 ± 0.63 2.25 ± 2.37 0.67 ± 0.25 

S6 11.83 ± 5.67 3.08 ± 1.06 6.2 ± 1.27 6.94 ± 1.17 0.35 ± 0.16 

S7 15.83 ± 7.17 3.65 ± 1.22 6.08 ± 1.71 5.25 ± 2.36 0.62 ± 0.16 

S8 25.25 ± 16.04 4.94 ± 2 6.08 ± 2.36 3.95 ± 2.01 1.27 ± 0.98 

Se1 9.61 ± 8.18 0.82 ± 0.09 1.92 ± 0.56 0.41 ± 0.18 0.88 ± 0.14 

M5 28.67 ± 9.94 10.03 ± 1.06 12.11 ± 0.75 2.13 ± 0.46 2.79 ± 2.04 

S8/S1 4 99 6 9 17 

COD: chemical oxygen demand. NH3-N: ammonia. TN: total nitrogen. TP: total phosphate.   
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Appendix Table A-10. Chemical mass loadings per sampling point (mean of biological replicates with 
standard deviations). Total antibiotics summarize all antibiotics and antibiotic derivates detected in at 
least 60% of the samples above the detection limit (amoxicillin, ciprofloxacin, sulfamethoxazole, 
dehydrated erythromycin, lincomycin, trimethoprim, azithromycin, clarithromycin, clindamycin, 
sulfamethazine, ofloxacin, enrofloxacin). Data for S1-S8 based on four biological replicates. Data for 
Se1 and M5 based on three biological replicates. Fold-change calculated by dividing the mean S8 with 
the mean S1 values. 

 COD 

(kg/d) 

NH3-N 

(kg/d) 

TN 

(kg/d) 

TP 

(kg/d) 

Total antibiotics 

(g/d) 

S1 223 ± 180 2 ± 3 40 ± 22 17 ± 13 73 ± 46 

S2 1,154 ± 633 329 ± 112 567 ± 232 113 ± 48 1,187 ± 1,669 

S5 19,641 ± 8,009 4,914 ± 2666 7,924 ± 4,551 1,659 ± 878 668 ± 255 

S6 5,026 ± 3,724 1,488 ± 1,142 3,234 ± 2,269 3,521 ± 2,273 348 ± 156 

S7 42,955 ± 59,766 6,442 ± 4,378 11,045 ± 7,638 7,905 ± 2,650 622 ± 161 

S8 205,902 ± 189,333 34,392 ± 17,377 42,610 ± 22,092 28,830 ± 17,632 1,266 ± 979 

Se1 2,088 ± 1,516 183 ± 81 405 ± 124 90 ± 46 878 ± 141 

M5 2,877 ± 1,584 973 ± 307 1,164 ± 306 210 ± 85 2,785 ± 2,039 

S8/S1 923 14,270 1,060 1,650 17 

COD: chemical oxygen demand. NH3-N: ammonia. TN: total nitrogen. TP: total phosphate.  

Appendix Table A-11. Coliform concentrations per sampling point in colony forming units (CFU) per 
mL river water (mean of biological replicates with standard deviation or minimum and maximum values). 
ESBL E. coli, CRB-0.5 E. coli and CRB-2 E. coli measurements were under detection limit in more than 
40% of the sample, so the R2D substitution method was not applied. For these parameters we report 
minimum and maximum values instead of means. CRB-2 and CRB-2 E. coli was only measured for trips 
II-IV, so the mean and standard deviation are based on three biological replicates. For all other 
parameters, data for S1-S8 is based on four biological replicates and data for Se1 and M5 is based on 
three biological replicates. Fold-change calculated by dividing the mean S8 with the mean S1 values. 

 

TC E. coli 
ESBL 

coliform 

ESBL 

E. coli 
CRB-0.5 

CRB-0.5 

E. coli 
CRB-2 

CRB-2 

E. coli 

S1 (1.1 ± 0.5) 

x 103 

(3.5 ± 2) 

x 101 

(1.5 ± 1.3) 

x 102 

(<0.5 − 2) 

x 101 

(9 ± 3.8) 

x 101 
<0.5 x 101 

(3.1 ± 4.1) 

x 101 
<0.5 x 101 

S2 (1.7 ± 1.3) 

x 104 

(3.4 ± 5.5) 

x 103 

(3.5 ± 5.6) 

x 103 

(<0.1 – 

3.5) x 102 

(0.9 ± 1.3) 

x 103 

<0.5 / 1 

x 101 

(1.1 ± 0.9) 

x 102 
<0.5 x 101 

S5 (2.7 ± 0.6) 

x 104 

(1.1 ± 0.2) 

x 103 

(1.1 ± 0.8) 

x 103 

(<1 – 8) 

x 101 

(4.8 ± 3.8) 

x 102 
<1 x 101 

(7.1 ± 2.7) 

x 101 
<0.5 x 101 

S6 (1.4 ± 0.7) 

x 103 

(3.3 ± 1.2) 

x 101 

(5.4 ± 4.3) 

x 101 

(<0.5 – 1) 

x 101 

(4.3 ± 2) 

x 101 
<0.5 x 101 

(9 ± 8) 

x 100 
<0.5 x 101 

S7 (1.1 ± 0.1) 

x 104 

(4.9 ± 1.3) 

x 102 

(9.4 ± 5.4) 

x 102 

(<0.05 – 1) 

x 102 

(2.5 ± 1.9) 

x 102 

<0.5 / 1 

x 101 

(4.2 ± 3.1) 

x 101 
<0.5 x 101 

S8 (4.1 ± 3.3) 

x 104 

(2.8 ± 2.1) 

x 103 

(4 ± 4.1) 

x 103 

(<0.1 – 5) 

x 102 

(3.8 ± 3.4) 

x 102 

<0.5 / 1 

x 101 

(1.1 ± 0.2) 

x 102 
<0.5 x 101 

Se1 (1.1 ± 0.2) 

x 104 

(6.4 ± 0.2) 

x 102 

(7.2 ± 1.2) 

x 102 

(<1 – 4) 

x 101 

(4 ± 1.7) 

x 102 
<1 x 101 

(8.9 ± 1.5) 

x 101 
<0.5 x 101 

M5 (8 ± 2.7) 

x 104 

(1.3 ± 0.3) 

x 104 

(8.3 ± 5.9) 

x 103 

(<0.1 – 6) 

x 102 

(1.9 ± 1.5) 

x 103 

(<1 − 1) 

x 101 

(4 ± 1) 

x 102 

(<0.5 – 1) 

x 101 

S8/S1 37 80 27 NA 4 NA 3 NA 

CRB: carbapenem resistant bacteria. CRB-0.5: CRB screened with 0.5 µg/mL meropenem. CRB-2: 
CRB screened with 2 µg/mL meropenem. ESBL: extended-spectrum β-lactamase. NA: not applicable. 
TC: total coliform (TC).  
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Appendix Table A-12. Coliform mass loading per sampling point in colony forming units (CFU) per river 
water per day (mean of biological replicates with standard deviation). ESBL E. coli, CRB-0.5 E. coli and 
CRB-2 E. coli mass loadings were not calculated as more than 40% of measurements were under 
detection limit. CRB-2 mass loadings were only measured for trips II-IV, so the mean and standard 
deviation data is based on three biological replicates. For all other parameters, data for S1-S8 is based 
on four biological replicates and data for Se1 and M5 is based on three biological replicates. Fold-
change calculated by dividing the mean S8 with the mean S1 values. NA = not applicable. 

 TC E. coli ESBL coliform CRB-0.5 CRB-2 

S1 (4 ± 2) x 1013 (1 ± 0.5) x 1012 (4 ± 3) x 1012 (4 ± 4) x 1012 (0.8 ± 1) x 1012 

S2 (2 ± 1) x 1015 (4 ± 6) x 1014 (4 ± 6) x 1014 (1 ± 1) x 1014 (1 ± 1) x 1013 

S5 (3 ± 0.9) x 1015 (1 ± 0.7) x 1015 (1 ± 0.9) x 1015 (5 ± 4) x 1014 (1 ± 0.8) x 1014 

S6 (6 ± 5) x 1014 (2 ± 1) x 1013 (3 ± 3) x 1013 (3 ± 2) x 1013 (5 ± 7) x 1012 

S7 (2 ± 2) x 1016 (9 ± 7) x 1014 (2 ± 0.9) x 1015 (4 ± 2) x 1014 (6 ± 5) x 1013 

S8 (3 ± 2) x 1017 (2 ± 2) x 1016 (3 ± 3) x 1016 (3 ± 3) x 1015 (7 ± 3) x 1014 

Se1 (3 ± 2) x 1015 (1 ± 0.8) x 1014 (2 ± 0.8) x 1014 (8 ± 3) x 1013 (2 ± 0.9) x 1013 

M5 (8 ± 3) x 1015 (1 ± 0.5) x 1015 (9 ± 8) x 1014 (2 ± 2) x 1014 (4 ± 0.6) x 1013 

S8/S1 7,500 20,000 7,500 750 875 

CRB: carbapenem resistant bacteria. CRB-0.5: CRB screened with 0.5 µg/mL meropenem. CRB-2: 
CRB screened with 2 µg/mL meropenem. ESBL: extended-spectrum β-lactamase. NA: not applicable. 
TC: total coliform (TC).  

Appendix Table A-13. Summarized antibiotic resistance gene (ARG) and mobile genetic element 
(MGE) levels in river water (mean of biological replicates with standard deviation). Data for S1-S8 based 
on four biological replicates. Data for Se1 and M5 based on three biological replicates. Fold-change 
calculated by dividing the mean S8 with the mean S1 values. 

 

Detected 

(number) 

River water concentration 

(copies/mL) 

River water mass loading 

(copies/d) 

Normalised cell 

concentration 

(copies/cell) 

ARG MGE ARG MGE ARG MGE ARG MGE 

S1 
119 ± 

14 
10 ± 1 

(1.9 ± 1.7) x 

105 

(1.3 ± 1.1) x 

105 

(6.3 ± 4.1) x 

1015 

(4.3 ± 2.6) x 

1015 
0.1 ± 0.1 0.1 ± 0 

S2 
161 ± 

15 
12 ± 1 

(3.9 ± 3.3) x 

107 

(3.1 ± 3.6) x 

107 

(4.5 ± 3.5) x 

1018 

(3.6 ± 4) x 

1018 
1.3 ± 0.5 0.9 ± 0.7 

S5 154 ± 7 11 ± 1 
(6.5 ± 1.4) x 

107 

(3.7 ± 0.8) x 

107 

(7.2 ± 5.1) x 

1019 

(4.1 ± 3.1) x 

1019 
1.1 ± 0.2 0.7 ± 0.2 

S6 120 ± 5 11 ± 0 
(7.5 ± 4.6) x 

106 

(6.9 ± 2.7) x 

106 

(4 ± 3.7) x 

1018 

(3.7 ± 3) x 

1018 
0.7 ± 0.1 0.8 ± 0.2 

S7 145 ± 3 11 ± 1 
(2.2 ± 0.6) x 

107 

(1.9 ± 0.9) x 

107 

(5.5 ± 6.9) x 

1019 

(5.1 ± 7.2) x 

1019 
1.2 ± 0.2 1 ± 0.3 

S8 150 ± 8 11 ± 1 
(1.2 ± 0.9) x 

108 

(1.1 ± 0.9) x 

108 

(8.6 ± 7.2) x 

1020 

(8.1 ± 7.3) x 

1020 
1.7 ± 0.6 1.6 ± 0.6 

Se1 165 ± 3 12 ± 0 
(2.2 ± 1.5) x 

107 

(1.4 ± 0.8) x 

107 

(4.4 ± 7.1) x 

1018 

(2.9 ± 1.3) x 

1018 
2 ± 0.6 1.3 ± 0.3 

M5 156 ± 9 12 ± 1 
(3.1 ± 2.6) x 

108 

(2.3 ± 1.9) x 

108 

(3.1 ± 2.6) x 

1019 

(2.3 ± 2) x 

1019 
2.6 ± 1.2 1.9 ± 1 

S8/S1 1.3 1.1 632 846 136,508 188,372 17 16 
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Appendix Table A-14. Detected antibiotic resistance genes (ARGs) per class in river water (mean of 
biological replicates with standard deviation). Data for S1-S8 based on four biological replicates. Data 
for Se1 and M5 based on three biological replicates. Numbers in brackets indicate total number of ARGs 
per class included in the high-throughput qPCR assay. 

 
Amino-

glycoside 

(36) 

β-

Lactams 

(52) 

FCA (9) 
MLSB 

(46) 

Non-

specific 

(51) 

Sulfon-

amide (7) 

Tetra-

cycline 

(39) 

Vanco-

mycin 

(32) 

Others 

(11) 

S1 17 ± 3 25 ± 4 6 ± 1 14 ± 3 32 ± 1 3 ± 1 16 ± 3 4 ± 0 3 ± 1 

S2 27 ± 2 34 ± 4 7 ± 1 21 ± 3 35 ± 1 4 ± 1 22 ± 4 7 ± 1 4 ± 1 

S5 25 ± 1 34 ± 2 7 ± 1 20 ± 2 34 ± 2 4 ± 1 23 ± 2 4 ± 1 4 ± 0 

S6 20 ± 1 24 ± 3 6 ± 1 15 ± 1 27 ± 2 3 ± 1 18 ± 2 5 ± 1 2 ± 1 

S7 25 ± 1 31 ± 1 6 ± 1 18 ± 1 34 ± 1 4 ± 1 21 ± 1 4 ± 1 3 ± 1 

S8 25 ± 1 33 ± 3 7 ± 1 18 ± 2 35 ± 1 4 ± 1 21 ± 2 4 ± 1 3 ± 0 

Se1 25 ± 1 38 ± 4 7 ± 1 21 ± 2 35 ± 1 4 ± 1 26 ± 3 5 ± 1 4 ± 1 

M5 25 ± 2 34 ± 2 7 ± 1 19 ± 3 34 ± 2 4 ± 0 24 ± 1 5 ± 3 4 ± 0 

FCA: fluoroquinolone, quinolone, florfenicol, chloramphenicol, and amphenicol ARGs. MLSB: 
macrolide-lincosamide-streptogramin B ARGs. 

Appendix Table A-15. Antibiotic resistance gene (ARG) concentrations in river water (copies/mL) per 
class (mean of biological replicates with standard deviation). Data for S1-S8 based on four biological 
replicates. Data for Se1 and M5 based on three biological replicates. 

 Amino-

glycoside 

β-

Lactams 
FCA MLSB 

Non-

specific 

Sulfon-

amide 

Tetra-

cycline 

Vanco-

mycin 
Others 

S1 
(3.6 ± 3.7) 

x 104 

(3 ± 3.3) x 

104 

(5.7 ± 4.7) 

x 103 

(7.5 ± 7.4) 

x 103 

(8 ± 5.7) x 

104 

(1.1 ± 1.1) 

x 104 

(2.1 ± 1.4) 

x 104 

(3.4 ± 

2.6) x 

103 

(1 ± 0.9) x 

103 

S2 
(1.1 ± 1.2) 

x 107 

(4.3 ± 4.7) 

x 106 

(1.5 ± 1.8) 

x 106 

(1.2 ± 1.4) 

x 106 

(9 ± 7.6) x 

106 

(9.2 ± 3.4) 

x 106 

(2.7 ± 3.5) 

x 106 

(6.8 ± 

4) x 104 

(9.8 ± 15) 

x 104 

S5 
(1.6 ± 0.3) 

x 107 

(6.3 ± 1.8) 

x 106 

(2 ± 0.6) x 

106 

(2.1 ± 0.5) 

x 106 

(1.8 ± 

0.32) x 

107 

(1.6 ± 0.6) 

x 107 

(3.2 ± 0.8) 

x 106 

(1.6 ± 

0.6) x 

105 

(6 ± 1.2) x 

104 

S6 
(1.4 ± 0.7) 

x 106 

(3.7 ± 2.2) 

x 105 

(8.7 ± 4.4) 

x 104 

(2.8 ± 1.5) 

x 105 

(2.9 ± 1.7) 

x 106 

(2.1 ± 1.7) 

x 106 

(2.3 ± 0.9) 

x 105 

(2.9 ± 

1.8) x 

104 

(8.7 ± 7) x 

103 

S7 
(6.1 ± 1) x 

106 

(2.2 ± 0.4) 

x 106 

(7.5 ± 1.6) 

x 105 

(9.2 ± 2.5) 

x 105 

(6.9 ± 2.1) 

x 106 

(3.7 ± 2.3) 

x 106 

(1.1 ± 0.4) 

x 106 

(6.7 ± 

2.7) x 

104 

(1.8 ± 0.7) 

x 104 

S8 
(3.8 ± 2.7) 

x 107 

(1.6 ± 1.2) 

x 107 

(5.9 ± 4.3) 

x 106 

(4.8 ± 3.5) 

x 106 

(3.7 ± 2.5) 

x 107 

(1.7 ± 1.2) 

x 107 

(5.9 ± 3.4) 

x 106 

(2.4 ± 

1.8) x 

105 

(9 ± 5.4) x 

104 

Se1 
(8.8 ± 6.4) 

x 106 

(3.3 ± 2.5) 

x 106 

(1.6 ± 1.6) 

x 106 

(5.4 ± 2.4) 

x 105 

(5.6 ± 3.2) 

x 106 

(5.1 ± 2.9) 

x 105 

(1.5 ± 0.6) 

x 106 

(1.7 ± 

0.9) x 

104 

(1.8 ± 0.2) 

x 104 

M5 
(9 ± 8.5) x 

107 

(3.6 ± 2.8) 

x 107 

(9 ± 6.8) x 

106 

(1.2 ± 1.2) 

x 107 

(9.1 ± 7.3) 

x 107 

(5.8 ± 4.1) 

x 107 

(1.4 ± 1.2) 

x 107 

(2.9 ± 

1.4) x 

105 

(3.1 ± 2.2) 

x 105 

FCA: fluoroquinolone, quinolone, florfenicol, chloramphenicol, and amphenicol ARGs. MLSB: 
macrolide-lincosamide-streptogramin B ARGs.  



 

126 

Appendix Table A-16. Normalised antibiotic resistance gene (ARG) cell concentrations in river water 
(copies/cell) per class (mean of biological replicates with standard deviation). Data for S1-S8 based on 
four biological replicates. Data for Se1 and M5 based on three biological replicates. 

 Amino-

glycoside 

β-

Lactams 
FCA MLSB 

Non-

specific 

Sulfon-

amide 

Tetra-

cycline 

Vanco-

mycin 
Others 

S1 
0.02 ± 

0.02 

0.01 ± 

0.01 
0 ± 0 0 ± 0 

0.04 ± 

0.02 

0.01 ± 

0.01 

0.01 ± 

0.01 
0 ± 0 0 ± 0 

S2 
0.32 ± 

0.22 

0.13 ± 

0.08 

0.04 ± 

0.04 

0.04 ± 

0.03 

0.3 ± 

0.11 

0.37 ± 

0.1 

0.08 ± 

0.07 
0 ± 0 0 ± 0 

S5 
0.29 ± 

0.07 

0.11 ± 

0.03 

0.04 ± 

0.01 

0.04 ± 

0.01 

0.33 ± 

0.03 

0.29 ± 

0.07 

0.06 ± 

0.01 
0 ± 0 0 ± 0 

S6 
0.14 ± 

0.05 

0.04 ± 

0.01 
0.01 ± 0 

0.03 ± 

0.01 

0.28 ± 

0.07 

0.19 ± 

0.07 

0.03 ± 

0.01 
0 ± 0 0 ± 0 

S7 
0.33 ± 

0.05 

0.12 ± 

0.02 

0.04 ± 

0.01 

0.05 ± 

0.01 

0.37 ± 

0.05 

0.19 ± 

0.09 

0.06 ± 

0.01 
0 ± 0 0 ± 0 

S8 
0.51 ± 

0.24 

0.22 ± 

0.1 

0.08 ± 

0.04 

0.07 ± 

0.03 

0.51 ± 

0.15 

0.24 ± 

0.05 

0.09 ± 

0.02 
0 ± 0 0 ± 0 

Se1 
0.78 ± 

0.31 

0.29 ± 

0.12 

0.13 ± 

0.09 

0.05 ± 

0.01 

0.51 ± 

0.11 

0.05 ± 

0.01 

0.15 ± 

0.02 
0 ± 0 0 ± 0 

M5 
0.71 ± 

0.45 

0.29 ± 

0.13 

0.07 ± 

0.03 

0.09 ± 

0.07 

0.79 ± 

0.36 

0.47 ± 

0.18 

0.12 ± 

0.06 
0 ± 0 0 ± 0 

FCA: fluoroquinolone, quinolone, florfenicol, chloramphenicol, and amphenicol ARGs. MLSB: 
macrolide-lincosamide-streptogramin B ARGs. 

Appendix Table A-17. Mobile genetic element (MGE) levels in river water (mean of biological replicates 
with standard deviation). All measurements based on technical triplicates. Data for S1-S8 based on four 
biological replicates. Data for Se1 and M5 based on three biological replicates. 

 

Detected (number) River water concentration (copies/mL) 
Normalised cell concentration 

(copies/cell)  

Int Tran Int Tran Int Tran 

S1 2 ± 1 8 ± 0 (6 ± 4.1) x 104 (7.4 ± 6.8) x 104 0.03 ± 0.02 0.04 ± 0.03 

S2 4 ± 1 8 ± 0 (7.6 ± 5.8) x 106 (2.4 ± 3.1) x 107 0.26 ± 0.09 0.66 ± 0.61 

S5 4 ± 1 8 ± 1 (1.4 ± 0.4) x 106 (2.3 ± 0.5) x 107 0.26 ± 0.07 0.41 ± 0.09 

S6 3 ± 0 8 ± 0 (1.7 ± 1) x 106 (5.3 ± 1.8) x 106 0.16 ± 0.04 0.61 ± 0.22 

S7 3 ± 1 8 ± 0 (5.1 ± 2.5) x 106 (1.4 ± 0.6) x 107 0.27 ± 0.09 0.73 ± 0.24 

S8 3 ± 1 8 ± 0 (3.5 ± 2.9) x 107 (7.9 ± 5.8) x 107 0.47 ± 0.23 1.09 ± 0.38 

Se1 4 ± 0 8 ± 0 (5.7 ± 3.5) x 106 (8.5 ± 4.7) x 106 0.51 ± 0.13 0.78 ± 0.2 

M5 4 ± 1 8 ± 0 (8.9 ± 7.6) x 107 (1.4 ± 1.2) x 108 0.73 ± 0.37 1.19 ± 0.58 

Int: integrons. Tran: transposases. 
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Appendix Table A-18. Seasonal effects. Paired t-tests and Cohen's D effect sizes comparing mass 
loadings (ML), concentrations (C) and detected numbers (D) for water quality and antibiotic resistant 
parameters between the dry and wet season. For applied transformations, see Appendix Table A-7. 

 Paired t-test Cohen's D effect size 

Type Parameter Type Unit P value 

Degrees 

of 

freedom 

t value Value 
95% confidence 

interval range 

Water quality 

DO C mg/L 0.4200 7 -0.85662 -0.18 -0.64 0.27 

NH3-N 
C mg/L 0.0328 7 2.65340 0.34 0.06 0.62 

ML kg/d 0.6597 7 0.45969 0.03 -0.11 0.17 

COD 
C mg/L 0.8636 7 0.17825 0.07 -0.73 0.87 

ML kg/d 0.5765 7 -0.58559 -0.08 -0.36 0.21 

TN 
C kg/d 0.0213 7 2.95380 0.41 0.1 0.72 

ML mg/L 0.4207 7 0.85535 0.08 -0.12 0.27 

TP 
C kg/d 0.3615 7 0.97614 0.25 -0.3 0.79 

ML mg/L 0.7489 7 -0.33296 -0.03 -0.22 0.16 

Plating 

TC 
C CFU/mL 0.0299 7 2.71750 0.36 0.07 0.66 

ML CFU/d 0.2749 7 1.18430 0.15 -0.13 0.43 

E. coli 
C CFU/mL 0.0770 7 2.07240 0.3 -0.02 0.61 

ML CFU/d 0.1381 7 1.67380 0.21 -0.06 0.47 

ESBL coliform 
C CFU/mL 0.0059 7 3.89890 0.67 0.26 1.07 

ML CFU/d 0.0197 7 3.01030 0.4 0.1 0.7 

CRB-0.5 
C CFU/mL 0.1287 7 1.72210 0.39 -0.11 0.89 

ML CFU/d 0.2891 7 1.14700 0.23 -0.21 0.67 

Antibiotic Total antibiotics 
C ng/L 0.0224 7 2.91970 0.9 0.12 1.69 

ML g/d 0.0746 7 2.09300 0.35 -0.02 0.72 

S16 rRNA S16 rRNA 
C copies/mL 0.0200 7 2.99840 0.32 0.08 0.55 

ML copies/d 0.3778 7 0.94143 0.12 -0.16 0.4 

Detected 

MGEs/ARGs 

Detected ARGs D NA 0.0124 7 3.34140 0.49 0.16 0.82 

Detected MGEs D NA 0.0796 7 2.04940 0.67 -0.1 1.44 

Abundance 

MGEs/ARGs 

Abundance ARGs 
C copies/mL 0.0105 7 3.46360 0.34 0.12 0.56 

ML copies/d 0.1449 7 1.64040 0.19 -0.06 0.43 

Abundance MGEs 
C copies/mL 0.0073 7 3.73210 0.4 0.16 0.64 

ML copies/d 0.1013 7 1.88570 0.22 -0.03 0.46 

Normalised 

ARGs/MGEs 
Normalised ARGs 

C copies/cell 0.0239 7 2.87330 0.43 0.09 0.77 

C copies/cell 0.0329 7 2.65190 0.57 0.07 1.08 

ARGs: antibiotic resistant genes. CFU: colony forming units. COD: chemical oxygen demand. CRB-
0.5: carbapenem resistant bacteria selected for with 0.5 µg/mL meropenem. ESBL: extended-
spectrum β-lactamase. DO: dissolved oxygen. MGE: mobile genetic elements. NA: not applicable. 
NH3-N: ammonia. TC: total coliform. TN: total nitrogen. TP: total phosphorus.  
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Appendix Table A-19. Spatial effects. Welch's t-test and Cohen's D effect size effect-sizes comparing 
mass loadings (ML), concentrations (C) and detected numbers (D) for water quality and antibiotic 
resistant parameters between the up- (S1) and downstream (S8). For applied transformations, see 
Appendix Table A-7. 

 Welch's t-test Cohen's D effect-size 

Type Parameter Type Unit P value 

Degrees 

of 

freedom 

t value Value 
95% confidence 

interval range 

Water 

quality 

DO C mg/L 0.0000 4.52 22.02 15.57 5.89 25.25 

NH3-N 
C mg/L 0.0163 3.00 -4.89 -3.46 -6.19 -0.73 

ML kg/d 0.0000 4.84 -17.49 -12.37 -20.13 -4.61 

COD 
C mg/L 0.0895 3.53 -2.33 -1.64 -3.65 0.36 

ML kg/d 0.0001 5.99 -9.77 -6.91 -11.47 -2.34 

TN 
C kg/d 0.0218 3.28 -4.12 -2.91 -5.39 -0.43 

ML mg/L 0.0000 5.99 -17.33 -12.25 -19.95 -4.56 

TP 
C kg/d 0.0393 3.01 -3.50 -2.47 -4.77 -0.18 

ML mg/L 0.0000 5.80 -14.70 -10.39 -16.98 -3.80 

Plating 

Coliform 
C CFU/mL 0.0067 3.95 -5.21 -3.68 -6.52 -0.84 

ML CFU/d 0.0001 4.38 -13.79 -9.75 -15.96 -3.54 

E. coli 
C CFU/mL 0.0104 3.68 -4.83 -3.42 -6.13 -0.70 

ML CFU/d 0.0004 3.63 -12.36 -8.74 -14.36 -3.12 

ESBL coliform 
C CFU/mL 0.0131 5.85 -3.52 -2.49 -4.79 -0.18 

ML CFU/d 0.0001 5.66 -9.55 -6.75 -11.23 -2.27 

CRB-0.5 
C CFU/mL 0.0888 4.21 -2.20 -1.56 -3.53 0.42 

ML CFU/d 0.0001 5.99 -9.93 -7.02 -11.66 -2.39 

Antibiotic Antibiotics 
C ng/L 0.0032 5.75 -4.86 -3.43 -6.16 -0.71 

ML g/d 0.0001 4.55 -12.61 -8.92 -14.64 -3.19 

S16 rRNA S16 rRNA 
C copies/mL 0.0025 3.57 -7.63 -5.40 -9.12 -1.67 

ML copies/d 0.0000 4.89 -19.67 -13.91 -22.59 -5.23 

Detected 

MGE/ARG 
Detected ARG 

D NA 0.0141 4.55 -3.87 -2.74 -5.14 -0.33 

D NA 0.0300 6.00 -2.83 -2.00 -4.12 0.12 

Abundance 

MGE/ARG 

Abundance ARG 
C copies/mL 0.0002 5.17 -9.20 -6.50 -10.84 -2.17 

ML copies/d 0.0000 5.13 -18.04 -12.75 -20.74 -4.76 

Abundance MGE 
C copies/mL 0.0001 5.31 -9.68 -6.85 -11.38 -2.32 

ML copies/d 0.0000 4.99 -18.07 -12.78 -20.79 -4.77 

Normalised 

ARG/MGE 
Normalised ARG 

C copies/cell 0.0120 3.07 -5.36 -3.79 -6.68 -0.90 

C copies/cell 0.0120 3.07 -5.36 -3.47 -6.21 -0.73 

ARGs: antibiotic resistant genes. CFU: colony forming units. COD: chemical oxygen demand. CRB-
0.5: carbapenem resistant bacteria selected for with 0.5 µg/mL meropenem. ESBL: extended-
spectrum β-lactamase. DO: dissolved oxygen. MGE: mobile genetic elements. NA: not applicable. 
NH3-N: ammonia. TC: total coliform. TN: total nitrogen. TP: total phosphorus.  
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Appendix Table A-20. Spearman correlations between river water concentrations of total antibiotics, 
amoxicillin and ciprofloxacin (both antibiotics detected in the catchment above their PNECs), total 
antibiotic resistant genes (ARGs) and ARGs reported by antibiotic class for the river catchment (n=30). 
Correlation values only shown for P < 0.05 with P values corrected for multiple testing with the Benjamini 
Hochberg approach. 

 
Total antibiotics Amoxicillin Ciprofloxacin 

ARG 0.70* 0.39 0.56* 

Aminoglycoside 0.78* 0.49* 0.6* 

β-Lactam 0.76* 0.46 0.62* 

FCA 0.79* 0.48* 0.61* 

MLSB 0.74* 0.40 0.58* 

Non-specific 0.68* - 0.56* 

Sulfonamide 0.51* - 0.5* 

Tetracycline 0.77* 0.48* 0.57* 

Vancomycin 0.58* - 0.55* 

Other 0.71* 0.41 0.58* 

*: P < 0.01. FCA: fluoroquinolone, quinolone, florfenicol, chloramphenicol, and amphenicol ARGs. 
MLSB: macrolide-lincosamide-streptogramin B ARGs. 
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Appendix B  

 

Appendix Figure B-1. Skudai catchment in Malaysia with sampling points from this study (for details 
see Chapter 3) and selected national Department of Environment (DoE) water quality monitoring sites 
(102◦59’54.19” E and 104◦11’8.54” E longitude and 1◦56’31.67” N and 1◦22’41.16” N latitude). 

 

Appendix Figure B-2. Annual ammonia (NH3-N), dissolved oxygen (DO) and water quality index (WQI) 
levels for the Skudai catchment (a,c,e based on national monitoring stations 3SI09, 3SI10, 3SI13, 3SI07, 
3SI06, 3SI05 and 3SI16) and at the most downstream Skudai sampling point (b,d,f) for 2002-2006 and 
2010-2018. For panels a, c and e, boxplots represent 84 measurements per year except for 2015 (91), 
2017 (49) and 2018 (42). For panels b, d and f, boxplots represent 12 measurements per year except 
for 2015 (13), 2017 (7) and 2018 (6). 
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Appendix Figure B-3. Residual analysis of the linear regression model NH3-N and coliform (log10 
transformed) concentrations for the Department of Environment (DoE) Skudai catchment water quality 
dataset 2018.  

Appendix Table B-1. HSPF modelling options (based on 312). 
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• Air temperature as a function of elevation 

• Snow accumulation and melting 

• Hydrological cycle components (evapotranspiration, surface detention surface runoff, 
infiltration, interflow, base flow, percolation to deep groundwater) 

• Sediment production and removal 

• Soil temperature 

• Surface water temperature, dissolved oxygen and carbon dioxide concentrations in overland 
flow 

• Generalized water quality constituents modelled as accumulated storages removed by flow or 
potency factors associated with sediment 

• More detailed modelling of pesticide processes (runoff, leaching, adsorption/desorption, 
degradation) 

• Nutrient processes (transport by flow and sediment association, leaching, 
adsorption/desorption, denitrification, nitrification, plant uptake, immobilization, mineralization) 

• Tracer elements 
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 • Air temperature as a function of elevation 

• Snow accumulation and melting 

• Water budget (surface components only) 

• Solids accumulation and removal including methods that are independent of storm events 

• Surface water temperature and gas concentrations 

• Generalized water quality constituents 
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• Hydraulic behaviour using the kinematic wave assumption 

• Longitudinal advection of dissolved and entrained constituents 

• Water temperature using a heat balance approach (absorption of shortwave radiation, 
longwave radiation, emission of longwave radiation, conduction-convection and evaporation) 

• Inorganic sediment deposition, scour and transport by particle size 

• Partitioning, hydrolysis, volatilization, oxidation, biodegradation, first-order decay, and parent 
chemical/metabolite transformations for generalized chemicals 

• Dissolved oxygen and BOD processes (decay, settling, benthal sinks and sources, re-
aeration, sinks and sources related to plankton metabolism) 

• Nitrogen processes (ammonia volatilization, ammonification, denitrification, ammonia 
adsorption/desorption with suspended sediment) 

• Phosphate adsorption/desorption with suspended sediment; phytoplankton processes 
(growth, respiration, sinking, zooplankton predation, death) 

• Zooplankton process (growth, respiration, death) 

• Benthic algae processes (growth, respiration, death) 

• Carbon dioxide-bicarbonate system processes (carbon dioxide invasion, zooplankton 
respiration, BOD decay, net growth of algae, and benthal releases) that determine pH 
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Appendix Table B-2. National Department of Environment (DoE) water quality monitoring sampling 
campaigns per sampling point and year. 

 Skudai upstream → downstream Melana 

 3SI18 3SI09 

(=S1) 

3SI10 3SI13 3SI07 3SI06 

(=S7) 

3SI05 

(=S8) 

3SI15 3SI16 

2002 6 12 12 12 12 12 12 6 12 

2003 6 12 12 12 12 12 12 6 12 

2004 7 12 12 12 12 12 12 6 12 

2005 6 12 12 12 12 12 12 6 12 

2006 6 12 12 12 12 12 12 7 12 

2010 6 12 12 12 12 12 12 6 12 

2011 6 12 12 12 12 12 12 6 12 

2012 7 12 12 12 12 12 12 6 12 

2013 6 12 12 12 12 12 12 6 12 

2014 6 12 12 12 12 12 12 7 12 

2015 5 12 12 12 12 12 12 5 12 

2016 4 12 12 12 12 12 12 4 12 

2017 5 7 7 7 7 7 7 5 7 

2018 6 6 6 6 6 6 6 6 6 

All 82 158 158 158 158 158 158 82 158 
 

Appendix Table B-3. Overview of input data applied to operate the HSPF Skudai model.179 

Data type Period cover Time step Sources 

Meteorological data 

Rainfall 1987/99 - 
2015 

Hourly from five rain 
gauges (not all 
covering the full period 
cover)  

Department of Irrigation and 
Drainage and Malaysia 
Meteorological Department 

Cloud cover 1999 - 2015 Hourly National Climate Data Online, 
National Centers for Environmental 
Information 

Dew temperature 1999 - 2015 Hourly National Climate Data Online, 
National Centers for Environmental 
Information 

Air temperature 1999 - 2015 Hourly National Climate Data Online, 
National Centers for Environmental 
Information 

Wind speed 1999 - 2015 Hourly National Climate Data Online, 
National Centers for Environmental 
Information 

Evaporation 1987 - 2015 Daily  Department of Irrigation and 
Drainage 

Atmospheric Deposition 

Wet atmospheric 
deposition  

2002 - 2015 Monthly Malaysia Meteorological Department 

Dry atmospheric 
deposition 

2002 - 2015 Monthly Department of Environment 

Hydrological data 

Stream flow/water level, 
station 1636401 located 
at Kampong Separa 

2002 – 2015 
(missing data 
2007 – 2008)  

Monthly Department of Irrigation and 
Drainage 

Stream flow/water level, 
UTM station at Kampong 
Pertanian 

2012 - 2014 Monthly/hourly  Department of Hydraulics and 
Hydrology, Faculty of Civil 
Engineering (FKA) of Universiti 
Teknologi Malaysia (UTM) 

Topography, soil and land classification 

Digital elevation model 
(DEM) 

2010 7.5 min, 1 arc sec 
interval and 30 m 
resolution 

Global Data Explorer (Land 
Processes Distributed Active Archive 
Centre (LP DAAC), National 
Aeronautics and Space 
Administration (NASA), USGS data 
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centre, George Mason University's 
Centre for Spatial Information 
Science and Systems)  

Soil data 1970 1:250,000 Soil survey division of Ministry of 
Agriculture and Fisheries  

Land use through remote 
sensing data (Landsat 4-
5, with TM sensor 
Landsat 7 with ETM+ 
sensor and Landsat 8 
with OLI sensor) 

1989, 1999, 
2009, 2013, 
2015 

30 x 30 m Obtained from USGS EROS Data 
Centre (EDC) and accessed via 
USGS Global Visualization Viewer 
(GLOVIS) 

Water quality data 

Water temperature, DO, 
BOD, nitrate nitrogen, 
ammonia nitrogen, 
orthophosphate at four 
stations  

2002 - 2014 Monthly Department of Environment 

Point source data 

Wastewater treatment 
plants for 121 sources 

Not applicable Not applicable Indah Water Konsortium (IKW) 

  



 

134 

Appendix C  

 

Appendix Figure C-1. Cell concentration and reads per sample (a) and sampling depth per sampling 
point (b). For (a), Samples ranked according to decreasing cell concentration. Cell concentration and 
reads per sample correlated moderately (n = 38, Spearman ρ = 0.52, P = 0.0007528). For sampling 
depth (b), reads per sample (=sequencing depth) was divided by cell concentration. Data represented 
is based on five biological replicates for the main river (S1, S2, S5, S6, S7, S8) and on four biological 
replicates for the tributaries (Se1, M5). Box-plot elements are defined as center line (median), box limits 
(upper and lower quartiles), whiskers (1.5x interquartile range) and points (outliers).  

 

Appendix Figure C-2. Barplots showing the 20 most abundant ASVs grouped into families with remain 
pooled into 'Other' for the relative (RMP; a) and quantitative (QMP; b) microbiome profiling approach. 
Data represented (n = 38) is based on five biological replicates for the main river (S1, S2, S5, S6, S7, 
S8) and on four biological replicates for the tributaries (Se1, M5). 
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Appendix Figure C-3. Rarefaction curves (a) and alpha diversity indices (richness, Shannon index and 
Simpson index) for the QMP (b) and RMP (c) dataset. Data represented (n = 38) is based on five 
biological replicates for the main river (S1, S2, S5, S6, S7, S8) and on four biological replicates for the 
tributaries (Se1, M5). Box-plot elements are defined as centre line (median), box limits (upper and lower 
quartiles), whiskers (1.5x interquartile range) and points (outliers).  
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Appendix Figure C-4. Hill number α-diversities per sampling point for q = 0, q = 1 and q = 2 for the 
quantitative microbiome profiling (QMP) approach (a, c, e) and the relative microbiome profiling (RMP) 
approach (b, d, f). Data represented (n = 38) is based on five biological replicates for the main river (S1, 
S2, S5, S6, S7, S8) and on four biological replicates for the tributaries (Se1, M5). Box-plot elements are 
defined as center line (median), box limits (upper and lower quartiles), whiskers (1.5x interquartile range) 
and points (outliers).  
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Appendix Figure C-5. ARG and MGE numbers (a), river water concentrations (b) and normalised cell 
concentration (c) detected with HT-qPCR per sampling point in the Skudai catchment. Mean data 
represented is based on five biological replicates for the main river (S1, S2, S5, S6, S7, S8) and on four 
biological replicates for the tributaries (Se1, M5). 

 

Appendix Table C-1. List of the 20 most abundant ASVs classified to genus level based on the QMP 
and RMP approach. For genus level, numbers in brackets were added to differentiate ASVs with the 
same genus. where grey colouring for the QMP or RMP listing highlights ASVs not present in the RMP 
or QMP listing, respectively. * indicates where ASV rank order is the same in the QMP and RMP listing. 
ND = not classified to genus level. 

Top 20 ASVs based QMP approach 

ASV Phylum Class Order Family Genus 

1 Bacteroidota Bacteroidia Flavobacteriales Weeksellaceae Cloacibacterium (1) 

2 Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Acinetobacter (1) 

3 Proteobacteria Gammaproteobacteria Burkholderiales Rhodocyclaceae C39 (1) * 

4 Proteobacteria Gammaproteobacteria Burkholderiales Comamonadaceae ND (1) 

5 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Novosphingobium (1)* 

6 Proteobacteria Gammaproteobacteria Burkholderiales Rhodocyclaceae C39 (2)* 

7 Proteobacteria Gammaproteobacteria Burkholderiales Rhodocyclaceae C39 (3) 

8 Bacteroidota Bacteroidia Flavobacteriales Flavobacteriaceae Flavobacterium (1) 

9 Proteobacteria Gammaproteobacteria Burkholderiales Rhodocyclaceae C39 (4) 

10 Cyanobacteria Cyanobacteriia Cyanobacteriales Phormidiaceae 
Planktothrix_NIVA-CYA_15 
(1) 

11 Actinobacteriota Actinobacteria Corynebacteriales Mycobacteriaceae Mycobacterium (1) 

12 Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Acinetobacter (2) 

13 Proteobacteria Gammaproteobacteria Burkholderiales Comamonadaceae ND (2) 

14 Proteobacteria Gammaproteobacteria Aeromonadales Aeromonadaceae Tolumonas (1) 

15 Firmicutes Negativicutes 
Veillonellales-
Selenomonadales 

Selenomonadaceae ND (3) 
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16 Campilobacterota Campylobacteria Campylobacterales Arcobacteraceae Arcobacter (1) 

17 Campilobacterota Campylobacteria Campylobacterales Arcobacteraceae Pseudarcobacter (1) 

18 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Novosphingobium (1) 

19 Proteobacteria Gammaproteobacteria Burkholderiales Comamonadaceae Aquabacterium (1) 

20 Bacteroidota Bacteroidia Flavobacteriales Flavobacteriaceae Flavobacterium (1) 

Top 20 ASVs based RMP approach 

ASV Phylum Class Order Family Genus 

1 Proteobacteria Gammaproteobacteria Burkholderiales Comamonadaceae ND (1) 

2 Bacteroidota Bacteroidia Flavobacteriales Weeksellaceae Cloacibacterium (1) 

3 Proteobacteria Gammaproteobacteria Burkholderiales Rhodocyclaceae C39 (1)* 

4 Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Acinetobacter (1) 

5 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Novosphingobium (1)* 

6 Proteobacteria Gammaproteobacteria Burkholderiales Rhodocyclaceae C39 (2)* 

7 Actinobacteriota Actinobacteria Corynebacteriales Mycobacteriaceae Mycobacterium (1) 

8 Proteobacteria Gammaproteobacteria Burkholderiales Comamonadaceae ND (4) 

9 Proteobacteria Gammaproteobacteria Burkholderiales Comamonadaceae ND (5) 

10 Proteobacteria Gammaproteobacteria Burkholderiales Burkholderiaceae Polynucleobacter (1) 

11 Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Acinetobacter (2) 

12 Proteobacteria Gammaproteobacteria Burkholderiales Comamonadaceae ND (2) 

13 Proteobacteria Gammaproteobacteria Burkholderiales Rhodocyclaceae C39 (3) 

14 Bacteroidota Bacteroidia Flavobacteriales Flavobacteriaceae Flavobacterium (1) 

15 Cyanobacteria Cyanobacteriia Synechococcales Cyanobiaceae Cyanobium_PCC-6307 (1) 

16 Proteobacteria Gammaproteobacteria Burkholderiales Rhodocyclaceae C39 (4) 

17 Proteobacteria Gammaproteobacteria Aeromonadales Aeromonadaceae Tolumonas (1) 

18 Cyanobacteria Cyanobacteriia Cyanobacteriales Phormidiaceae 
Planktothrix_NIVA-CYA_15 
(1) 

19 Proteobacteria Gammaproteobacteria Burkholderiales Comamonadaceae ND (6) 

20 Firmicutes Negativicutes 
Veillonellales-
Selenomonadales 

Selenomonadaceae ND (3) 

 

Appendix Table C-2. Results from the Welch’s t-test and Cohen’s D effect size calculations comparing 
Hill number diversities upstream (S1) and downstream (S8). Comparisons based on five biological 
replicates for each site. Statistical significance for P < 0.05 and large effect size for D < -0.8. 

 
Welch’s t-test Cohen’s D effect size 

P value Degrees of freedom t value Value 95% confidence interval range 

QMP q=0 0.0021 4.31 -6.62 -4.19 -6.80 -1.58 

QMP q=1 0.0203 4.45 -3.53 -2.23 -4.09 -0.38 

QMP q=2 0.0993 4.56 -2.06 -1.31 -2.91 0.30 

RMP q=0 0.1245 8.00 -1.72 -1.09 -2.65 0.48 

RMP q=1 0.1175 6.71 -1.80 -1.14 -2.71 0.44 

RMP q=2 0.1747 5.65 -1.55 -0.98 -2.53 0.56 
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Appendix Table C-3. ARG and MGE numbers included in the HT-qPCR assay, detected in each river 
water sample and maximum amount detected. 

 Gene 
number 

included in 
HT-qPCR 

assay 

Detected in each river water sample 
(n=38) 

Maximum amount detected in 
catchment 

Number % of assay Number % of assay 

ARGs 283 70 25 211 75 

• Aminoglycoside 36 13 36 31 86 

• β-Lactams 52 14 27 45 87 

• FCA 9 4 44 9 100 

• MLSB 46 9 20 29 63 

• Non-specific 51 14 27 39 76 

• Others 11 1 9 8 73 

• Sulfonamide 7 1 14 6 86 

• Tetracycline 39 12 31 31 79 

• Vancomycin 32 2 6 13 41 

MGEs 12 9 75 12 100 

• Integrons 4 2 50 4 100 

• Transposase 8 7 88 8 100 

ALL 578 79 14 223 39 

 

Appendix Table C-4. Results from the Welch’s t-test and Cohen’s D effect size calculations comparing 
log10 ARG and MGE river water concentrations (gene copies/mL), ARG and MGE detected numbers, 
and ARG and MGE normalised cell concentrations for up-(S1) and downstream (S8). Comparisons 
based on five biological replicates for each site. Statistical significance for P < 0.05 and large effect size 
for D < -0.8. 

 
Welch’s t-test Cohens D effect size 

 
P value Degrees of 

freedom 
t value Exact value 95% confidence interval range 

ARG log10 river water concentration 
(copies/mL) 

<0.0001 6.91 -11.75 -7.43 -11.53 -3.33 

MGE log10 river water concentration 
(copies/mL) 

<0.0001 7.19 -12.07 -7.63 -11.83 -3.44 

Detected ARGs (number) 0.0015 7.06 -5.01 -3.17 -5.36 -0.98 

Detected MGEs (number) 0.0057 7.69 -3.79 -2.40 -4.31 -0.49 

ARG normalised cell concentration 
(copies/cell) 

0.0035 4.10 -6.06 -3.83 -6.29 -1.38 

MGE normalised cell concentration 
(copies/cell) 

0.0071 4.03 -5.06 -3.20 -5.40 -1.00 
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Appendix Table C-5. ARG and MGE detected numbers, river water concentrations and normalised cell 
concentrations per sampling point in the Skudai catchment. Mean and standard deviations based on 
five biological replicates for the main river (S1, S2, S5, S6, S7, S8) and on four biological replicates for 
the tributaries (Se1, M5). 

 Detected (number) River water concentration (copies/mL) Normalised cell concentration 
(copies/cell)  

ARGs MGEs ARGs MGEs ARGs MGEs 

S1 118.8 ± 
12.4 

10.2 ± 
0.4 

(1.8 ± 1.5) x 105 (1.2 ± 1) x 105 0.1 ± 0.06 0.07 ± 0.04 

S2 162.2 ± 
13.5 

11.4 ± 
0.5 

(3.4 ± 3.1) x 107 (2.6 ± 3.3) x 107 1.2 ± 0.42 0.84 ± 0.61 

S5 154.4 ± 6.2 11.4 ± 
0.9 

(5.4 ± 2.6) x 107 (3.1 ± 1.5) x 107 1.14 ± 0.14 0.68 ± 0.14 

S6 125.2 ± 
13.1 

11.0 ± 
0.0 

(8.6 ± 4.7) x 106 (8 ± 3.4) x 106 0.75 ± 0.14 0.79 ± 0.19 

S7 148.2 ± 8.6 11.2 ± 
0.4 

(2.2 ± 0.6) x 107 (2.1 ± 0.9) x 107 1.11 ± 0.19 0.99 ± 0.28 

S8 152.4 ± 8.4 11.4 ± 
0.5 

(1.1 ± 0.8) x 108 (1 ± 0.8) x 108 1.62 ± 0.56 1.43 ± 0.6 

Se
1 

164.0 ± 3.7 11.8 ± 
0.5 

(5.7 ± 7) x 107 (3.9 ± 5.1) x 107 1.84 ± 0.57 1.24 ± 0.27 

M5 153.3 ± 9.3 11.8 ± 
0.5 

(2.4 ± 2.5) x 108 (1.8 ± 1.9) x 108 2.2 ± 1.22 1.7 ± 0.89 

 

Appendix Table C-6. Ten most abundant ARGs in the Skudai catchment based on the mean river water 
concentration (n = 38). 

Gene name Classification Mechanism Mean ARG 
copies/mL 

Standard 
deviation ARG 
copies/mL 

sul2 Sulfonamide Cellular protection 1.1 x 107  1.8 x 107 

qacEdelta1_02 Non-specific Efflux pump 7.2 x 106 1.3 x 107 

qacEdelta1_01 Non-specific Efflux pump 7 x 106 1.3 x 107 

aadA2_03 Aminoglycoside Antibiotic deactivate 4.2 x 106 8.1 x 106 

aadA1 Aminoglycoside Antibiotic deactivate 3.2 x 106 6 x 106 

qacH_02 Non-specific Efflux pump 2.3 x 106 3.6 x 106 

aadA2_01 Aminoglycoside Antibiotic deactivate 2.1 x 106 4.5 x 106 

aadA2_02 Aminoglycoside Antibiotic deactivate 2. x 106 4.4 x 106 

blaOXA10_01 β-Lactam Antibiotic deactivate 2. x 106 3.6 x 106 

blaOXA10_02 β-Lactam Antibiotic deactivate 1.7 x 106 2.9 x 106 

 

Appendix Table C-7. Properties for the ARG, MGE and taxa (order level) networks based on the 
relative microbiome profiling (RMP) approach and quantitative microbiome profiling (QMP) approach. 
Only nodes with at least three other connections are shown. 

 
RMP QMP 

Nodes 153 176 

• ARGs 130 130 

• Transposase 7 7 

• Integrons 3 3 

• Taxa 13 36 

Edges 7690 9455 

Network diameter (maximum distance between edges) 5 3 

Average path length 1.4 1.37 

Average degree (node connectivity) 100.523 107.443 

Graph density 0.661 0.614 

Modularity index 0.072 0.094 

 


