3 research outputs found

    Visible-Light Active Flexible and Durable Photocatalytic Antibacterial Ethylene-co-vinyl Acetate—Ag/AgCl/α-Fe2O3 Composite Coating

    No full text
    When particles are mixed in polymer, particle surfaces become passivated by polymer matrix, leading to significantly reduced photocatalytic and, thus, also reduced antibacterial activity, as the catalytic particles become isolated from the outer environment and microorganisms reaching the surface. Herein, we demonstrate a facile and rapid approach for coating preparation at room temperature, yielding good adhesion of particles in combination with the particles’ interface location. Flexible ethylene-co-vinyl acetate Ag/AgCl/α-Fe2O3 composite coatings were prepared by the spin-coating method. The synthesized photocatalytically active coating surface exhibited a distinct and rapid inhibition of bacterial growth, with at least a 7-log reduction of gram-positive bacteria Staphylococcus aureus viability after 30 min of visible-light illumination. We also analyzed the shedding of the Ag-ions and reactive oxygen species production from the composite coating and showed that reactive oxygen species played the main role in the photocatalytic bacterial inactivation, destroying the bacteria cell as proven by the Confocal Laser Scanning Microscopy

    Antibacterial Activity of Positively and Negatively Charged Hematite (α-Fe2O3) Nanoparticles to Escherichia coli, Staphylococcus aureus and Vibrio fischeri

    Get PDF
    This research and work has been supported by the European Regional Development Fund within the Activity 1.1.1.2 “Post-doctoral Research Aid” of the Specific Aid Objective 1.1.1 (i.e., “to increase the research and innovative capacity of scientific institutions of Latvia and the ability to attract external financing, investing in human resources and infrastructure”) of the Operational Programme “Growth and Employment” (No. 1.1.1.2/VIAA/2/18/331).In the current study, the antibacterial activity of positively and negatively charged spherical hematite (α-Fe2O3) nanoparticles (NPs) with primary size of 45 and 70 nm was evaluated against clinically relevant bacteria Escherichia coli (gram-negative) and Staphylococcus aureus (gram-positive) as well as against naturally bioluminescent bacteria Vibrio fischeri (an ecotoxicological model organism). α-Fe2O3 NPs were synthesized using a simple green hydrothermal method and the surface charge was altered via citrate coating. To minimize the interference of testing environment with NP’s physic-chemical properties, E. coli and S. aureus were exposed to NPs in deionized water for 30 min and 24 h, covering concentrations from 1 to 1000 mg/L. The growth inhibition was evaluated following the postexposure colony-forming ability of bacteria on toxicant-free agar plates. The positively charged α-Fe2O3 at concentrations from 100 mg/L upwards showed inhibitory activity towards E. coli already after 30 min of contact. Extending the exposure to 24 h caused total inhibition of growth at 100 mg/L. Bactericidal activity of positively charged hematite NPs against S. aureus was not observed up to 1000 mg/L. Differently from positively charged hematite NPs, negatively charged citrate-coated α-Fe2O3 NPs did not exhibit any antibacterial activity against E. coli and S. aureus even at 1000 mg/L. Confocal laser scanning microscopy and flow cytometer analysis showed that bacteria were more tightly associated with positively charged α-Fe2O3 NPs than with negatively charged citrate-coated α-Fe2O3 NPs. Moreover, the observed associations were more evident in the case of E. coli than S. aureus, being coherent with the toxicity results. Vibrio fischeri bioluminescence inhibition assays (exposure medium 2% NaCl) and colony forming ability on agar plates showed no (eco)toxicity of α-Fe2O3 (EC50 and MBC > 1000 mg/L).---//---This work is licensed under a CC BY 4.0 license.This research and work has been funded by the European Regional Development Fund within the Activity 1.1.1.2 “Post-doctoral Research Aid” of the Specific Aid Objective 1.1.1 (i.e., “to increase the research and innovative capacity of scientific institutions of Latvia and the ability to attract external financing, investing in human resources and infrastructure”) of the Operational Programme “Growth and Employment” (No. 1.1.1.2/VIAA/2/18/331) and by the Estonian Research Council Grants PRG749 and European Regional Development Fund grants NAMUR+ 2014-2020.4.01.16-0123 and TK134. Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    Surface chemistry dependent toxicity of inorganic nanostructure glycoconjugates on bacterial cells and cancer cell lines

    No full text
    © 2022 Elsevier B.V.Surface functionalized nanostructures have outstanding potential in biological applications owing to their target-specific design. In this study, we utilized laboratory synthesized carbohydrate-derivatives (i.e., galactose, mannose, lactose, and cellobiose derivatives) for aqueous one-pot synthesis of gold (Au) and silver (Ag) nanostructure glycoconjugates (NSs), and iron metal-organic framework glycoconjugates (FeMOFs). This work aims to test whether differences in the surface chemistry of the inorganic nanostructures play roles in revealing their toxicities towards bacterial cells and cancerous cell lines. As of the first step, biological activity of AuNSs, AgNSs, and FeMOFs were tested against a variety of gram (−) and gram (+) bacterial strains, where AgNSs possessed moderate to high antibacterial activities against all the tested bacterial strains, while AuNSs and FeMOFs showed their bacterial toxicity mostly depending on the strain. Minimum inhibitory concentration (MIC) and Minimum bactericidal concentration (MBC) determination studies were performed for the nanostructure glycoconjugates, for which μg/mL MBC values were obtained such as (Cellobiose p-aminobenzoic acid_AgNS) CBpAB_AgNS gave 50 μg/mL MBC value for P.aeruginosa and S.kentucy. The activity of selected sugar ligands and corresponding glycoconjugates were further tested on MDA-MB-231 breast cancer and A549 lung cancer cell lines, where selective anticancer activity was observed depending on the surface chemistry as well. Besides, D-penicillamine was introduced to galectin specific sugar ligand coated AuNS glycoconjugates, which showed very strong anticancer activities even at low doses. Overall, the importance of this work is that the surface chemistry of the inorganic nanostructures can be critical to reveal their toxicity towards bacterial cells and cancerous cell lines
    corecore