7 research outputs found

    Haridusteaduse valdkonna doktoriÔppe uuringu vahearuanne

    Get PDF
    Aruandes kirjeldatav haridusvaldkonna doktoriĂ”ppe uuring algatati Tartu Ülikooli Pedagogicumis 2009. aastal ESF programmi Eduko alategevuse 1.1.2 toel. Uuringu eesmĂ€rgiks on kirjeldada Eesti ĂŒlikoolides haridusvaldkonnas doktoriĂ”ppe toimimist ning osutada asjaoludele, mida vĂ”iks seostada doktoriĂ”ppe tulemuslikkuse varieerumisega ning mille osas on ĂŒlikoolides vĂ”imalik panustada doktoriĂ”ppe tĂ”hustamisse.http://eduko.archimedes.ee/files/Haridusteaduste%20doktorantide%20uuringu%20aruanne.pd

    PlutoF—a Web Based Workbench for Ecological and Taxonomic Research, with an Online Implementation for Fungal ITS Sequences

    Get PDF
    DNA sequences accumulating in the International Nucleotide Sequence Databases (INSD) form a rich source of information for taxonomic and ecological meta-analyses. However, these databases include many erroneous entries, and the data itself is poorly annotated with metadata, making it difficult to target and extract entries of interest with any degree of precision. Here we describe the web-based workbench PlutoF, which is designed to bridge the gap between the needs of contemporary research in biology and the existing software resources and databases. Built on a relational database, PlutoF allows remote-access rapid submission, retrieval, and analysis of study, specimen, and sequence data in INSD as well as for private datasets though web-based thin clients. In contrast to INSD, PlutoF supports internationally standardized terminology to allow very specific annotation and linking of interacting specimens and species. The sequence analysis module is optimized for identification and analysis of environmental ITS sequences of fungi, but it can be modified to operate on any genetic marker and group of organisms. The workbench is available at http://plutof.ut.ee

    Resequencing PNMT in European hypertensive and normotensive individuals: no common susceptibilily variants for hypertension and purifying selection on intron 1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human linkage and animal QTL studies have indicated the contribution of genes on Chr17 into blood pressure regulation. One candidate gene is <it>PNMT</it>, coding for phenylethanolamine-N-methyltransferase, catalyzing the synthesis of epinephrine from norepinephrine.</p> <p>Methods</p> <p>Fine-scale variation of <it>PNMT </it>was screened by resequencing hypertensive (n = 50) and normotensive (n = 50) individuals from two European populations (Estonians and Czechs). The resulting polymorphism data were analyzed by statistical genetics methods using Genepop 3.4, PHASE 2.1 and DnaSP 4.0 software programs. <it>In silico </it>prediction of transcription factor binding sites for intron 1 was performed with MatInspector 2.2 software.</p> <p>Results</p> <p><it>PNMT </it>was characterized by minimum variation and excess of rare SNPs in both normo- and hypertensive individuals. None of the SNPs showed significant differences in allelic frequencies among population samples, as well as between screened hypertensives and normotensives. In the joint case-control analysis of the Estonian and the Czech samples, hypertension patients had a significant excess of heterozygotes for two promoter region polymorphisms (SNP-184; SNP-390). The identified variation pattern of <it>PNMT </it>reflects the effect of purifying selection consistent with an important role of PNMT-synthesized epinephrine in the regulation of cardiovascular and metabolic functions, and as a CNS neurotransmitter. A striking feature is the lack of intronic variation. <it>In silico </it>analysis of <it>PNMT </it>intron 1 confirmed the presence of a human-specific putative Glucocorticoid Responsive Element (GRE), inserted by <it>Alu</it>-mediated transfer. Further analysis of intron 1 supported the possible existence of a full Glucocorticoid Responsive Unit (GRU) predicted to consist of multiple gene regulatory elements known to cooperate with GRE in driving transcription. The role of these elements in regulating <it>PNMT </it>expression patterns and thus determining the dynamics of the synthesis of epinephrine is still to be studied.</p> <p>Conclusion</p> <p>We suggest that the differences in PNMT expression between normotensives and hypertensives are not determined by the polymorphisms in this gene, but rather by the interplay of gene expression regulators, which may vary among individuals. Understanding the determinants of PNMT expression may assist in developing PNMT inhibitors as potential novel therapeutics.</p

    Identification of putative transciption regulating elements within human intron 1

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Resequencing in European hypertensive and normotensive individuals: no common susceptibilily variants for hypertension and purifying selection on intron 1"</p><p>http://www.biomedcentral.com/1471-2350/8/47</p><p>BMC Medical Genetics 2007;8():47-47.</p><p>Published online 23 Jul 2007</p><p>PMCID:PMC1947951.</p><p></p> Putative transcription factors binding sites (TFBS) predicted by MatInspector 2.2 software and regulatory elements identified by manual inspection are depicted upon the sequence of intron 1 (951 bp). The Glucocorticoid Responsive Element (GRE; consensus GGTACAnnnTGTTCT), a core for a potential Glucocorticoid Responsive Unit (GRU), is given in bold. The human-specific element is underlined. The two-directional arrows indicate the predicted binding sites for regulatory factors: IRE – Insulin Responsive Element (consensus T(G/A)TTT(T/G)(G/T)); ERE – Estrogen Responsive Element (consensus GGTCAnnnTGACC); NFÎșB – Nuclear Factor kappa B; Sp1/2 – Specificity protein 1/2; Egr1 – Early Growth Response 1; MAZ – Myc-Associated Zinc finger protein; ZBP-89 – Zinc finger Binding Protein 148, ZNF148; HMGI/Y – High Mobility Group protein isoform I and Y, HMGA1; RORA (RORα) – Retinoic acid receptor-related Orphan Receptor α; E4BP4 – mammalian transcription factor E4 Binding Protein 4
    corecore