3 research outputs found

    Analysis of the perceptual quality performance of different HEVC coding tools

    Get PDF
    Each new video encoding standard includes encoding techniques that aim to improve the performance and quality of the previous standards. During the development of these techniques, PSNR was used as the main distortion metric. However, the PSNR metric does not consider the subjectivity of the human visual system, so that the performance of some coding tools is questionable from the perceptual point of view. To further explore this point, we have developed a detailed study about the perceptual sensibility of different HEVC video coding tools. In order to perform this study, we used some popular objective quality assessment metrics to measure the perceptual response of every single coding tool. The conclusion of this work will help to determine the set of HEVC coding tools that provides, in general, the best perceptual response

    Error Resilient Coding Techniques for Video Delivery over Vehicular Networks

    Get PDF
    Nowadays, more and more vehicles are equipped with communication capabilities, not only providing connectivity with onboard devices, but also with off-board communication infrastructures. From road safety (i.e., multimedia e-call) to infotainment (i.e., video on demand services), there are a lot of applications and services that may be deployed in vehicular networks, where video streaming is the key factor. As it is well known, these networks suffer from high interference levels and low available network resources, and it is a great challenge to deploy video delivery applications which provide good quality video services. We focus our work on supplying error resilience capabilities to video streams in order to fight against the high packet loss rates found in vehicular networks. So, we propose the combination of source coding and channel coding techniques. The former ones are applied in the video encoding process by means of intra-refresh coding modes and tile-based frame partitioning techniques. The latter one is based on the use of forward error correction mechanisms in order to recover as many lost packets as possible. We have carried out an extensive evaluation process to measure the error resilience capabilities of both approaches in both (a) a simple packet error probabilistic model, and (b) a realistic vehicular network simulation framework. Results show that forward error correction mechanisms are mandatory to guarantee video delivery with an acceptable quality level , and we highly recommend the use of the proposed mechanisms to increase even more the final video quality

    Design and implementation of an efficient hardware integer motion estimator for an HEVC video encoder

    No full text
    High-Efficiency Video Coding (HEVC) was developed to improve its predecessor standard, H264/AVC, by doubling its compression efficiency. As in previous standards, Motion Estimation (ME) is one of the encoder critical blocks to achieve significant compression gains. However, it demands an overwhelming complexity cost to accurately remove video temporal redundancy, especially when encoding very high-resolution video sequences. To reduce the overall video encoding time, we propose the implementation of the HEVC ME block in hardware. The proposed architecture is based on (a) a new memory scan order, and (b) a new adder tree structure, which supports asymmetric partitioning modes in a fast and efficient way. The proposed system has been designed in VHDL (VHSIC Hardware Description Language), synthesized and implemented by means of the Xilinx FPGA, Virtex-7 XC7VX550T-3FFG1158. Our design achieves encoding frame rates up to 116 and 30 fps at 2 and 4K video formats, respectively
    corecore