22 research outputs found

    The study of optical gain for terahertz quantum cascade laser using density matrix method

    Get PDF
    Terahertz (THz) quantum cascade lasers (QCL) are currently increasing in popularity. It is expected to become the main source of emerging terahertz radiation technology and applications. However to produce the device within the application specification is costly and time consuming. This is because the manufacturing process of the superlattice growth and the device processing and testing are long and expensive processes. Thus a prediction tool is needed to overcome the problems in designing and producing THz QCL within the needed optical expectation. The density matrix method is used to calculate the performance of this device electronically and optically. The result obtained was compared to the experimental result conducted by previous researchers. The calculation result showed that the gain is 20 cm−1 when the population inversion occurs at threshold current density of 400 A cm-2. Meanwhile a negative gain or loss occurs below 350 A cm-2. As a conclusion, it is demonstrated that this method has a capability to explain the transport phenomena as well as to predict the performance of the THz QCL device design

    Alsolation and characterization of a heavy metalreducing enterobacteriaceae bacterium strain DRY 7 with the ability to assimilate phenol and diesel

    Get PDF
    Background/Objectives: Molybdenum, phenol and diesel are toxic to organism, and are part of global pollution. Their removal using microorganisms with multiple detoxification ability is being intensely sought as a cleaner and economic approach. Methods/Statistical analysis: A soil suspension was spread plated on a minimal salts media supplemented with molybdenum. Blue colonies, indicating molybdenum reduction was then screened for phenol and diesel degradation capabilities. Findings: A molybdenum-reducing bacterium locally isolated showed the ability to grow on phenol and diesel. The bacterium required pHs of between 5.8 and 6.3 and temperatures of between 30 and 40oC for optimal reduction. Among the carbon sources tested for supporting reduction, glucose was the best. A critical concentration of phosphate at just 5 mM was required, while molybdenum (sodium molybdate) was required between 15 and 25 mM. The absorption spectrum of the Mo-blue produced showed a characteristic maximum peak at 865 nm. The reduction of molybdenum was inhibited by the ions mercury, copper, chromium, lead and silver by 78.9, 78.4, 77.4, 53.5 and 36.8%, respectively. Analysis using phylogenetic analysis identifies the bacterium as Enterobacteriaceae bacterium strain DRY7. Growth on phenol and diesel as carbon sources showed that the optimal concentrations supporting growth was between 300 and 400 mg/L and between 300 and 500 mg/L, respectively. Application/Improvements: The capacity of this bacterium to detoxify a number of toxicants is an important property or bioremediation of soils contaminated with multiple toxicants

    Cu2+ and Al3+ co-substituted cobalt ferrite: structural analysis, morphology and magnetic properties

    Get PDF
    Cu-Al substituted Co ferrite nanopowders, Co1-xCux Fe2-x Alx O4 (0.0 ≤ x ≤ 0.8) were synthesized by the co-precipitation method. The effect of Cu-Al substitution on the structural and magnetic properties have been investigated. X-ray diffraction (XRD) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM) and vibrating sample magnetometer (VSM) are used for studying the effect of variation in the Cu-Al substitution and its impact on particle size, magnetic properties such as Ms and Hc. Cu-Al substitution occurs and produce a secondary phase, α-Fe2O3. The crystallite size of the powder calcined at 800°C was in the range of 19-26 nm. The lattice parameter decreases with increasing Cu-Al content. The nanostructural features were examined by FESEM images. Infrared absorption (IR) spectra shows two vibrational bands; at around 600 (v1) and 400 cm-1 (v2). They are attributed to the tetrahedral and octahedral group complexes of the spinel lattice, respectively. It was found that the physical and magnetic properties have changed with Cu-Al contents. The saturation magnetization decreases with the increase in Cu-Al substitution. The reduction of coercive force, saturation magnetization and magnetic moments are may be due to dilution of the magnetic interaction

    Selected microbial groups and short-chain fatty acids profile in a simulated chicken cecum supplemented with two strains of Lactobacillus.

    Get PDF
    Among the bacterial fermentation end products in the chicken cecum, butyrate is of particular importance because of its nutritional properties for the epithelial cell and pathogen inhibitory effects in the gut. An in vitro experiment, operated with batch bioreactor, was conducted to quantify butyric-producing bacteria in a simulated broiler cecum supplemented with Lactobacillus salivarius ssp. salicinius JCM 1230 and Lactobacillus agilis JCM 1048 during 24 h of incubation. Selected bacterial species were determined by real-time PCR and short-chain fatty acids and lactate concentrations were monitored. The results showed that after 24 h of incubation, Lactobacillus supplementation significantly increased the number of lactobacilli, bifidobacteria and Faecalibacterium prausnitzii in medium containing cecal content and lactobacilli supple-mentation (Cc + L) compared with the control (Cc). Addition of lactobacilli did not alter Escherichia coli and Clostridium butyricum, whereas it significantly (P < 0.05) reduced Salmonella in treatment Cc + L compared with the Cc treatment. Propionate and butyrate formation were significantly (P < 0.05) increased in treatment Cc + L as compared with the Cc treatment. Lactate was only detected in treatment containing 2 Lactobacillus strains. After 24 h of incubation, acetate concentration significantly (P < 0.05) decreased in all treatments. It was suggested that lactate produced by Lactobacillus in the cecal content improved the growth of butyric producers such as F. prausnitzii, which significantly increased butyrate accumulation. Additionally, the results showed that butyrate and propionate inhibited Salmonella without influencing the E. coli profile

    Structural, morphological and optical investigations of θ-Al2O3 ultrafine powder

    No full text
    Single-phase θ-Al2O3 nanopowder has been synthesized by co-precipitation technique. The synthesized powders were sintered at a temperature ranging from 900 to 1200 °C. A stable monoclinic phase is observed for the whole sintering temperature range. The purity, chemical bonds, morphology and optical properties of the powders were investigated by different characterization techniques. X-ray diffraction and Brunauer–Emmett–Teller analysis confirms the existence of ultrafine alumina powders with particle diameter of ∼5 nm and surface area of 100 m2/g. The novel optical results such as band gap of 5.8 eV would reveal the viability of observed phase of alumina in advanced semiconductor applications

    The effect of In0.1Ga0.9As underlying layer on the structural properties of self-assembled In0.5Ga0.5As quantum dots

    Get PDF
    The effect of a thin In0.1Ga0.9As underlying layer on the structural properties of single layer In0.5Ga0.5As quantum dots (QDs) was investigated using atomic force microscopy (AFM), transmission electron microscopy (TEM) and high-resolution X-ray diffraction (HR-XRD) characterization. The size of dots formed on the surface is uniform but the density increases with the addition of In0.1Ga0.9As underlying between In0.5Ga0.5As QDs and GaAs buffer layer. This is consistent with the TEM characterization. The existence of thin underlying layer has caused the dots to have different crystal orientation as shown in TEM characterization. From the HR-XRD characterization, broad peak of In0.1Ga0.9As underlying layer and QDs has been observed. The wider width of the layer peak than the expected one has been attributed to the strain-relaxation-induced defects. The growth of a thin In0.1Ga0.9As underlying layer in the In0.5Ga0.5As/GaAs structures strongly affects the structural properties, which was also believed to influence the optical properties of QDs

    Characterization of γ- Al2O3 nanopowders synthesized by co-precipitation method

    No full text
    Co-precipitation technique has been used to synthesize gamma-Al2O3 (γ-Al2O3) nanopowders under annealing temperature effect. The crystalline phase and purity for the prepared powder were characterized by different spectroscopy techniques. XRD analysis confirms the gamma phase of alumina nanopowders with particle diameter ranging from 6 to 24 nm, which confirms the quantum dots formation, which is also supported by the BET measurement. The surface area of the prepared nanopowders is in the range of 109–367 m2/g. Morphology analysis indicates that γ-Al2O3 nanopowders are consisted of grains almost spherical in shape. Some agglomeration of nanoparticles occurs, which become more regular hexagonal shaped with the increasing annealing temperature. The small nanoparticles size and the high surface area from a simple procedure for preparing γ-Al2O3 may make it more suitable for use as an adsorbent for malachite green

    Colchicine Prodrugs and Codrugs: Chemistry and Bioactivities

    Get PDF
    Antimitotic colchicine possesses low therapeutic index due to high toxicity effects in non-target cell. However, diverse colchicine analogs have been derivatized as intentions for toxicity reduction and structure-activity relationship (SAR) studying. Hybrid system of colchicine structure with nontoxic biofunctional compounds modified further affords a new entity in chemical structure with enhanced activity and selectivity. Moreover, nanocarrier formulation strategies have been used for colchicine delivery. This review paper focuses on colchicine nanoformulation, chemical synthesis of colchicine prodrugs and codrugs with different linkers, highlights linker chemical nature and biological activity of synthesized compounds. Additionally, classification of colchicine prodrugs based on type of conjugates is discussed, as biopolymers prodrugs,fluorescent prodrug, metal complexes prodrug, metal-labile prodrug and bioconjugate prodrug. Finally, we briefly summarized the biological importance of colchicine nanoformulation, colchicine prodrugs and codrugs.

    Spectral features and antibacterial properties of Cu-doped ZnO nanoparticles prepared by sol-gel method

    No full text
    Zn1-xCuxO (x = 0.00, 0.01, 0.03, and 0.05) nanoparticles are synthesized via the sol-gel technique using gelatin and nitrate precursors. The impact of copper concentration on the structural, optical, and antibacterial properties of these nanoparticles is demonstrated. Powder x-ray diffraction investigations have illustrated the organized Cu doping into ZnO nanoparticles up to Cu concentration of 5% (x = 0.05). However, the peak corresponding to CuO for x = 0.01 is not distinguishable. The images of field emission scanning electron microscopy demonstrate the existence of a nearly spherical shape with a size in the range of 30-52 nm. Doping Cu creates the Cu-O-Zn on the surface and results in a decrease in the crystallite size. Photoluminescence and absorption spectra display that doping Cu causes an increment in the energy band gap. The antibacterial activities of the nanoparticles are examined against Escherichia coli (Gram negative bacteria) cultures using optical density at 600 nm and a comparison of the size of inhibition zone diameter. It is found that both pure and doped ZnO nanoparticles indicate appropriate antibacterial activity which rises with Cu doping
    corecore