16 research outputs found

    Towards context classification and reasoning in IoT

    Get PDF
    Internet of Things (IoT) is the future of ubiquitous and personalized intelligent service delivery. It consists of interconnected, addressable and communicating everyday objects. To realize the full potentials of this new generation of ubiquitous systems, IoT's 'smart' objects should be supported with intelligent platforms for data acquisition, pre-processing, classification, modeling, reasoning and inference including distribution. However, some current IoT systems lack these capabilities: they provide mainly the functionality for raw sensor data acquisition. In this paper, we propose a framework towards deriving high-level context information from streams of raw IoT sensor data, using artificial neural network (ANN) as context recognition model. Before building the model, raw sensor data were pre-processed using weighted average low-pass filtering and a sliding window algorithm. From the resulting windows, statistical features were extracted to train ANN models. Analysis and evaluation of the proposed system show that it achieved between 87.3% and 98.1% accuracies

    Data centric trust evaluation and prediction framework for IOT

    Get PDF
    © 2017 ITU. Application of trust principals in internet of things (IoT) has allowed to provide more trustworthy services among the corresponding stakeholders. The most common method of assessing trust in IoT applications is to estimate trust level of the end entities (entity-centric) relative to the trustor. In these systems, trust level of the data is assumed to be the same as the trust level of the data source. However, most of the IoT based systems are data centric and operate in dynamic environments, which need immediate actions without waiting for a trust report from end entities. We address this challenge by extending our previous proposals on trust establishment for entities based on their reputation, experience and knowledge, to trust estimation of data items [1-3]. First, we present a hybrid trust framework for evaluating both data trust and entity trust, which will be enhanced as a standardization for future data driven society. The modules including data trust metric extraction, data trust aggregation, evaluation and prediction are elaborated inside the proposed framework. Finally, a possible design model is described to implement the proposed ideas

    Context representation for context-aware mobile multimedia content recommendation

    Get PDF
    Very few of the current solutions for content recommendation take into consideration the context of usage when analyzing the preferences of the user and issuing recommendations. Nonetheless, context can be extremely useful to help identify appropriate content for the specific situation or activity the user is in, while consuming the content. In this paper, we present a solution to allow content-based recommendation systems to take full potential of contextual data, by defining a standards-based representation model which accounts for possible relationships among low-level contexts. The MPEG-7 and MPEG-21 standards are used for content description and low-level context representation. OWL/RDF ontologies are used to capture contextual concepts and, together with SWRL to establish relationships and perform reasoning to derive high-level concepts the way humans do. This knowledge is then used to drive the recommendation and content adaptation processes. As a side achievement, an extension to the MPEG-21 specification was developed to accommodate the description of user activities, which we believe have a great impact on the type of content to be recommended

    Context-Aware Complex Human Activity Recognition Using Hybrid Deep Learning Model

    Get PDF
    Smart devices, such as smartphones, smartwatches, etc., are examples of promising platforms for automatic recognition of human activities. However, it is difficult to accurately monitor complex human activities on these platforms due to interclass pattern similarities, which occur when different human activities exhibit similar signal patterns or characteristics. Current smartphone-based recognition systems depend on traditional sensors, such as accelerometers and gyroscopes, which are built-in in these devices. Therefore, apart from using information from the traditional sensors, these systems lack the contextual information to support automatic activity recognition. In this article, we explore environmental contexts, such as illumination (light conditions) and noise level, to support sensory data obtained from the traditional sensors using a hybrid of Convolutional Neural Network and Long Short-Term Memory (CNN–LSTM) learning models. The models performed sensor fusion by augmenting low-level sensor signals with rich contextual data to improve the models’ recognition accuracy and generalization. Two sets of experiments were performed to validate the proposed solution. The first set of experiments used triaxial inertial sensing signals to train baseline models, while the second set of experiments combined the inertial signals with contextual information from environmental sensors. The obtained results demonstrate that contextual information, such as environmental noise level and light conditions using hybrid deep learning models, achieved better recognition accuracy than the traditional baseline activity recognition models without contextual information

    Multidimensional: User with File Content and Server’s status based Authentication for Secure File Operations in Cloud

    Get PDF
    The popularity of data storage in cloud servers is getting more and more favoured in recent times. Its ease of storage, availability and synchronization of personalized cloud file storage using client applications made cloud storage more popular than ever. In cloud storage system, using a basic authentication method like username and password are still one of the most popular forms of authentication. However, the security ensure by such traditional authentication method is weak and vulnerable because the user name and password can be compromised by intruders or the user account can be left open by forgetting to logoff in public computers, leading to exposure of information to unauthorised users and hackers. In recent years, using a two-factor authentication has become a trend throughout network-based cloud services, online banking system and any form of services that requires user authentication. Here, in this paper a second layer authentication in the form of session key is used to ensure the authenticity of the activities of the user after user’s web-based account is logged-in successfully. The interesting and the critical contribution in this paper is the way the session key is generated and delivers to the authentic user. The key is generated by using the hash value of the file content, file size, file last modified, pseudo-random generated by the server using CPU temperature, clock speed, system time, and network packet timings, and user based 8 digit random position selection from a 32 digit Hex to mitigate against the attacker while performing vital file activities which may lead to data lost or data destruction or when user’s credentials are compromised

    Deep Sensing: Inertial and Ambient Sensing for Activity Context Recognition using Deep Convolutional Neural Networks

    Get PDF
    With the widespread use of embedded sensing capabilities of mobile devices, there has been unprecedented development of context-aware solutions. This allows the proliferation of various intelligent applications, such as those for remote health and lifestyle monitoring, intelligent personalized services, etc. However, activity context recognition based on multivariate time series signals obtained from mobile devices in unconstrained conditions is naturally prone to imbalance class problems. This means that recognition models tend to predict classes with the majority number of samples whilst ignoring classes with the least number of samples, resulting in poor generalization. To address this problem, we propose augmentation of the time series signals from inertial sensors with signals from ambient sensing to train deep convolutional neural network (DCNNs) models. DCNNs provide the characteristics that capture local dependency and scale invariance of these combined sensor signals. Consequently, we developed a DCNN model using only inertial sensor signals and then developed another model that combined signals from both inertial and ambient sensors aiming to investigate the class imbalance problem by improving the performance of the recognition model. Evaluation and analysis of the proposed system using data with imbalanced classes show that the system achieved better recognition accuracy when data from inertial sensors are combined with those from ambient sensors, such as environmental noise level and illumination, with an overall improvement of 5.3% accuracy

    Continuous m-Health Data Authentication Using Wavelet Decomposition for Feature Extraction

    Get PDF
    The World Health Organization (WHO) in 2016 considered m-health as: “the use of mobile wireless technologies including smart devices such as smartphones and smartwatches for public health”. WHO emphasizes the potential of this technology to increase its use in accessing health information and services as well as promoting positive changes in health behaviours and overall management of diseases. In this regard, the capability of smartphones and smartwatches for m-health monitoring through the collection of patient data remotely, has become an important component in m-health system. It is important that the integrity of the data collected is verified continuously through data authentication before storage. In this research work, we extracted heart rate variability (HRV) and decomposed the signals into sub-bands of detail and approximation coefficients. A comparison analysis is done after the classification of the extracted features to select the best sub-bands. An architectural framework and a used case for m-health data authentication is carried out using two sub-bands with the best performance from the HRV decomposition using 30 subjects’ data. The best sub-band achieved an equal error rate (EER) of 12.42%

    Palm Vein Identification Based on Hybrid Feature Selection Model

    Get PDF
    Palm Vein Identification (PVI) is a modern biometric security technique used for enhancing security and authentication systems. The key characteristics of palm vein patterns include its uniqueness to each individual, its unforgettability, non-intrusiveness and its ability for disallowing unauthorized persons. However, the extracted features from the palm vein patterns are huge with high redundancy. In this paper, we propose a combined model of two-Dimensional Discrete Wavelet Transform, Principal Component Analysis (PCA), and Particle Swarm Optimization (PSO) (2D-DWTPP) that feeds wrapper model with an optimal subset of features to enhance the prediction accuracy of -palm vein patterns. The 2D-DWT extract features from palm vein images, using the PCA to reduce the redundancy in palm vein features. The system has been trained to select high recognition features based on the wrapper model. The proposed system uses four classifiers as an objective function to determine PVI which include Support Vector Machine (SVM), K Nearest Neighbor (KNN), Decision Tree (DT) and NaĂŻve Bayes (NB). The empirical results proved that the proposed model has the best results with SVM. Moreover, our proposed 2D-DWTPP model has been evaluated and the results show remarkable efficiency in comparison with AlexNet and other classifiers without feature selection. Experimentally, the proposed model has better accuracy as reflected by 98.65% whereas AlexNet has 63.5% accuracy and the classifier without feature selection process has 78.79% accuracy
    corecore