27 research outputs found

    Discordant Alternans Mechanism for Initiation of Ventricular Fibrillation In Vitro

    Get PDF
    Background: Ventricular tachyarrhythmias are often preceded by short sequences of premature ventricular complexes. In a previous study, a restitution-based computational model predicted which sequences of stimulated premature complexes were most likely to induce ventricular fibrillation in canines in vivo. However, the underlying mechanism, based on discordant-alternans dynamics, could not be verified in that study. The current study seeks to elucidate the mechanism by determining whether the spatiotemporal evolution of action potentials and initiation of ventricular fibrillation in in vitro experiments are consistent with model predictions. Methods and Results: Optical mapping voltage signals from canine right-ventricular tissue (n=9) were obtained simultaneously from the entire epicardium and endocardium during and after premature stimulus sequences. Model predictions of action potential propagation along a 1-dimensional cable were developed using action potential duration versus diastolic interval data. The model predicted sign-change patterns in action potential duration and diastolic interval spatial gradients with posterior probabilities of 91.1%, and 82.1%, respectively. The model predicted conduction block with 64% sensitivity and 100% specificity. A generalized estimating equation logistic-regression approach showed that model-prediction effects were significant for both conduction block (P \u3c 1x10E-15, coefficient 44.36) and sustained ventricular fibrillation (P=0.0046, coefficient, 1.63) events. Conclusions: The observed sign-change patterns favored discordant alternans, and the model successfully identified sequences of premature stimuli that induced conduction block. This suggests that the relatively simple discordant-alternans-based process that led to block in the model may often be responsible for ventricular fibrillation onset when preceded by premature beats. These observations may aid in developing improved methods for anticipating block and ventricular fibrillation

    Transmural Ultrasound-based Visualization of Patterns of Action Potential Wave Propagation in Cardiac Tissue

    Get PDF
    The pattern of action potential propagation during various tachyarrhythmias is strongly suspected to be composed of multiple re-entrant waves, but has never been imaged in detail deep within myocardial tissue. An understanding of the nature and dynamics of these waves is important in the development of appropriate electrical or pharmacological treatments for these pathological conditions. We propose a new imaging modality that uses ultrasound to visualize the patterns of propagation of these waves through the mechanical deformations they induce. The new method would have the distinct advantage of being able to visualize these waves deep within cardiac tissue. In this article, we describe one step that would be necessary in this imaging processā€”the conversion of these deformations into the action potential induced active stresses that produced them. We demonstrate that, because the active stress induced by an action potential is, to a good approximation, only nonzero along the local fiber direction, the problem in our case is actually overdetermined, allowing us to obtain a complete solution. Use of two- rather than three-dimensional displacement data, noise in these displacements, and/or errors in the measurements of the fiber orientations all produce substantial but acceptable errors in the solution. We conclude that the reconstruction of action potential-induced active stress from the deformation it causes appears possible, and that, therefore, the path is open to the development of the new imaging modality

    Termination of Scroll Waves by Surface Impacts

    No full text
    corecore