89 research outputs found

    Exploring the sensitivity of coastal inundation modelling to DEM vertical error

    Get PDF
    © 2018 Informa UK Limited, trading as Taylor & Francis Group. As sea level is projected to rise throughout the twenty-first century due to climate change, there is a need to ensure that sea level rise (SLR) models accurately and defensibly represent future flood inundation levels to allow for effective coastal zone management. Digital elevation models (DEMs) are integral to SLR modelling, but are subject to error, including in their vertical resolution. Error in DEMs leads to uncertainty in the output of SLR inundation models, which if not considered, may result in poor coastal management decisions. However, DEM error is not usually described in detail by DEM suppliers; commonly only the RMSE is reported. This research explores the impact of stated vertical error in delineating zones of inundation in two locations along the Devon, United Kingdom, coastline (Exe and Otter Estuaries). We explore the consequences of needing to make assumptions about the distribution of error in the absence of detailed error data using a 1 m, publically available composite DEM with a maximum RMSE of 0.15 m, typical of recent LiDAR-derived DEMs. We compare uncertainty using two methods (i) the NOAA inundation uncertainty mapping method which assumes a normal distribution of error and (ii) a hydrologically correct bathtub method where the DEM is uniformly perturbed between the upper and lower bounds of a 95% linear error in 500 Monte Carlo Simulations (HBM+MCS). The NOAA method produced a broader zone of uncertainty (an increase of 134.9% on the HBM+MCS method), which is particularly evident in the flatter topography of the upper estuaries. The HBM+MCS method generates a narrower band of uncertainty for these flatter areas, but very similar extents where shorelines are steeper. The differences in inundation extents produced by the methods relate to a number of underpinning assumptions, and particularly, how the stated RMSE is interpreted and used to represent error in a practical sense. Unlike the NOAA method, the HBM+MCS model is computationally intensive, depending on the areas under consideration and the number of iterations. We therefore used the HBM+ MCS method to derive a regression relationship between elevation and inundation probability for the Exe Estuary. We then apply this to the adjacent Otter Estuary and show that it can defensibly reproduce zones of inundation uncertainty, avoiding the computationally intensive step of the HBM+MCS. The equation-derived zone of uncertainty was 112.1% larger than the HBM+MCS method, compared to the NOAA method which produced an uncertain area 423.9% larger. Each approach has advantages and disadvantages and requires value judgements to be made. Their use underscores the need for transparency in assumptions and communications of outputs. We urge DEM publishers to move beyond provision of a generalised RMSE and provide more detailed estimates of spatial error and complete metadata, including locations of ground control points and associated land cover

    Covariant derivative expansion of Yang-Mills effective action at high temperatures

    Full text link
    Integrating out fast varying quantum fluctuations about Yang--Mills fields A_i and A_4, we arrive at the effective action for those fields at high temperatures. Assuming that the fields A_i and A_4 are slowly varying but that the amplitude of A_4 is arbitrary, we find a non-trivial effective gauge invariant action both in the electric and magnetic sectors. Our results can be used for studying correlation functions at high temperatures beyond the dimensional reduction approximation, as well as for estimating quantum weights of classical static configurations such as dyons.Comment: Minor changes. References added. Paper accepted for publication in Phys.Rev.

    New Middle Jurassic Kempynin Osmylid Lacewings from China

    Full text link

    Virus infection and grazing exert counteracting influences on survivorship of native bunchgrass seedlings competing with invasive exotics

    Get PDF
    1.  Invasive annual grasses introduced by European settlers have largely displaced native grassland vegetation in California and now form dense stands that constrain the establishment of native perennial bunchgrass seedlings. Bunchgrass seedlings face additional pressures from both livestock grazing and barley and cereal yellow dwarf viruses (B/CYDVs), which infect both young and established grasses throughout the state. 2.  Previous work suggested that B/CYDVs could mediate apparent competition between invasive exotic grasses and native bunchgrasses in California. 3.  To investigate the potential significance of virus-mediated mortality for early survivorship of bunchgrass seedlings, we compared the separate and combined effects of virus infection, competition and simulated grazing in a field experiment. We infected two species of young bunchgrasses that show different sensitivity to B/CYDV infection, subjected them to competition with three different densities of exotic annuals crossed with two clipping treatments, and monitored their growth and first-year survivorship. 4.  Although virus infection alone did not reduce first-year survivorship, it halved the survivorship of bunchgrasses competing with exotics. Within an environment in which competition strongly reduces seedling survivorship (as in natural grasslands), virus infection therefore has the power to cause additional seedling mortality and alter patterns of establishment. 5.  Surprisingly, clipping did not reduce bunchgrass survivorship further, but rather doubled it and disproportionately increased survivorship of infected bunchgrasses. 6.  Together with previous work, these findings show that B/CYDVs can be potentially powerful elements influencing species interactions in natural grasslands. 7.  More generally, our findings demonstrate the potential significance of multitrophic interactions in virus ecology. Although sometimes treated collectively as plant ‘predators’, viruses and herbivores may exert influences that are distinctly different, even counteracting

    The Physics of the B Factories

    Get PDF
    corecore