1,945 research outputs found

    Plastid redox state and sugars: Interactive regulators of nuclear-encoded photosynthetic gene expression

    Get PDF
    Feedback regulation of photosynthesis by carbon metabolites has long been recognized, but the underlying cellular mechanisms that control this process remain unclear. By using an Arabidopsis cell culture, we show that a block in photosynthetic electron flux prevents the increase in transcript levels of chlorophyll a/b-binding protein and the small subunit of Rubisco that typically occurs when intracellular sugar levels are depleted. In contrast, the expression of the nitrate reductase gene, which is induced by sugars, is not affected. These findings were confirmed in planta by using Arabidopsis carrying the firefly luciferase reporter gene fused to the plastocyanin and chlorophyll a/b-binding protein 2 gene promoters. Transcription from both promoters increases on carbohydrate depletion. Blocking photosynthetic electron transport with 3-(3',4'-dichlorophenyl)-1,1'-dimethylurea prevents this increase in transcription. We conclude that plastid-derived redox signaling can override the sugar-regulated expression of nuclear-encoded photosynthetic genes. In the sugar-response mutant, sucrose uncoupled 6 (sun6), plastocyanin-firefly luciferase transcription actually increases in response to exogenous sucrose rather than decreasing as in the wild type. Interestingly, plastid-derived redox signals do not influence this defective pattern of sugar-regulated gene expression in the sun6 mutant. A model, which invokes a positive inducer originating from the photosynthetic electron transport chain, is proposed to explain the nature of the plastid-derived signal

    Biomass estimations of invasives Yaupon, Chinese Privet and Chinese Tallow in east Texas Hardwood and Pine Ecosystems

    Get PDF
    Forest understory fuels can have profound effects on fire behavior and crown fire initiation. Accurate fire behavior prediction in understory fuels is an essential component for estimating fire intensity and severity during wildfire and prescribed fire events. This study focused on estimating temporal and seasonal changes in fuel loading parameters associated with the expansion of invasive yaupon (Ilex vomitoria), Chinese privet (Ligustrum sinense), and Chinese tallow (Triadica sebifera) in East Texas pine and hardwood ecosystems. Fuel loading data of invasive species infested sites indicated significant increases in understory biomass when compared to 1988 estimates, suggesting a clear need to revise regional fuel models. Multiple and simple regression biomass prediction equations were developed for all three-invasive species to facilitate fuel load estimates. These improved prediction equations will enhance fire management efforts as well as invasive species mitigation efforts in east Texas

    Mechanical and Vacuum Stability Design Criteria for the LHC Experimental Vacuum Chambers

    Get PDF
    Four colliding beam experiments are planned for the Large Hadron Collider (LHC) requiring experimental vacuum chambers in the interaction region. The beam pipe should be as transparent as possible to scattered particles and detectors should be as close as possible to the interaction point, resulting in small diameter beam pipes. This, together with the bunched beam structure, makes ion induced pre ssure bump instability, well known from the Intersecting Storage Rings (ISR) at CERN, a potential problem. Adequate conductance, cleanliness of the beam pipes and efficient pumping are required to avo id this instability. Suppression of electron multipacting requires appropriate surface coatings and cleaning procedures. Small beam pipe diameters must provide the required beam stay clear and still a llow margin for alignment and stability inside detectors. Design criteria to ensure both local and global stability under static and dynamic mechanical loads are defined

    A Test of the Mean Distance Method for Forest Regeneration Assessment

    Get PDF
    A new distance-based estimator for forest regeneration assessment, the mean distance method, was developed by combining ideas and techniques from the wandering quarter method, T-square sampling and the random pairs method. The performance of the mean distance method was compared to conventional 4.05 square meter plot sampling through simulation analysis on 405 square meter blocks of a field surveyed clumped distribution and a computer generated random distribution at different levels of density of 100, 50 and 25%. The mean distance method accurately estimated density on the random populations but the mean distance method estimates were more variable than those of 4.05 square meter plot sampling. The mean distance method overestimated actual density and was less precise than plot sampling when both methods were tested on the clumped populations. The optimum sample sizes needed for the mean distance method to achieve the same precision as 4.05 square meter plot sampling at all three density levels, for both the random and clumped spatial distributions, were at least 10 times larger than the sample size used for 4.05 square meter plot sampling

    Using GIS for Selecting Trees for Thinning

    Get PDF
    Thinning removes trees within a stand to regulate the level of site occupancy and subsequent stand development. Before thinning is applied, foresters determine the amount of residual growing stock, the spatial distribution of the residual trees, and the criteria used to select trees to cut. In this study, a portion of a loblolly pine (Pinus taeda) plantation was surveyed through a complete tree tally with the coordinates of each individual tree recorded. The dataset was then processed in a GIS program composed in Arc Marco Language (AML) applying a moving circular quadrat system superimposed over the study area. In each quadrant, tree attributes including DBH (nearest 0.1 inch), basal area (sq ft per ac), and density (trees per unit area) were utilized as determining factors for tree selection. A 3D visualization before and after thinning was created with a goal of equal distribution of trees across the stand

    Initial investigation of seasonal flammability of three invasive East Texas forest understory fuels using thermogravimetric analysis

    Get PDF
    East Texas forest understory fuels have become increasingly infested with invasive species which have contributed to greater hazardous fuel loads when combined with decades of fire exclusion and passive management. This study focused on estimating seasonal changes in flammability parameters of invasive yaupon (Ilex vomitoria), Chinese privet (Ligustrum sinense), and Chinese tallow (Triadica sebifera) using thermogravimetric analysis. Foliage and stem samples were collected in the dormant (February) and growing (August) seasons. Differential thermogravimetric (DTG) and proximate analyses were used to estimate species specific flammability parameters related to relative spontaneous ignition temperature (RSIT), gas-phase maximum mass loss rate (GP-MMLR), and combustion duration (GP-CD). Seasonality played a significant role among species RSIT (p\u3c0.0001) and GP-CD (p\u3c0.03). Proximate analysis VM% was relatively consistent with flammability indices, while the combination of VM% and ash% helped explain some inconsistencies. Yaupon exhibited the greatest foliage ignitability (\u3eRSIT) and combustibility (\u3eGP-MMLR) followed by Chinese privet and tallow. Consequently, yaupon poses a significant year round wildfire and fire management risk. Chinese privets’ greater dormant season ignitability may improve prescribed fire control efforts in mid-winter, but may also pose a significant wildfire risk during drought and windy conditions. Chinese tallow stems’ greater growing season flammability may enhance integrated control measures using prescribed fire in late summer and early fall. In summary, these data further local knowledge related to seasonal and relative plant flammability and may be useful as additional inputs into custom fuel models, as well as assigning flammability hazard ratings for ornamental vegetation within the wildland-urban interface

    Responses to Prescribed Fire at Big Thicket National Preserve, Texas, USA

    Get PDF
    US Federal land managers have utilized hand ignited prescribed fire at Big Thicket National Preserve in efforts to restore the structure and diversity of the longleaf pine (Pinus palustris) forest. A fire ecology study was initiated by Rice University in the early 1990’s and the National Park Service has continued monitoring the plots. Ordination was applied to species abundance data to examine changes in vegetation communities from a variety of prescribed fire treatments and controls. The vegetation data was separated by size class to include overstory, small tree, large sapling and seedling data. Across the size classes and treatments, the sandhill and wetland savanna vegetation types remained less effected by fire treatments and only the upland pine responded to changes in the overstory. Upon reviewing fire return interval histories, it became evident that prescribed fire alone was not changing vegetation communities. Most of the plots did not have longleaf pine trees or seedlings present and only two plots that were mechanical treated showed distinction among other treatment regimes. Restoration treatments including the mechanical and chemical application and seedling plantings are necessary to ensure restoration of the longleaf pine forest structure and diverse understory vegetation

    Universality in the Crossover between Edge Channel and Bulk Transport in the Quantum Hall Regime

    Full text link
    We present a new theoretical approach for the integer quantum Hall effect, which is able to describe the inter-plateau transitions as well as the transition to the Hall insulator. We find two regimes (metallic and insulator like) of the top Landau level, in which the dissipative bulk current appears in different directions. The regimes are separated by a temperature invariant point.Comment: 4 page, 2 eps figures included, submitte
    • …
    corecore