30 research outputs found
Publications des sociétés d'histoire et d'archéologie d'Alsace (années 2004-2005)
Bas-Rhin Société d’histoire d’Alsace Bossue N° 51 (2005) I. OURY, Poésie ; A. BOUR, La conscription ; R. BRODT, Habitat rural ancien ; J.-L. WILBERT, Aloyse Debra, Spahi de la 2e Division Leclerc ; F. AMOS, Nouvelles d’Amérique ; F. MATTY, Nouvelles d’Amérique (compléments) ; T. MATTY, La grande traversée ; E. THOMANN, De l’archéologie et des hommes. N° 52 (2005) F. MATTY, Poésie ; C. MULLER, L’église de Hirschland ; Ph. JEHIN, Les malheurs d’un braconnier d’Alsace Bossue ; J.-L. WILBERT, L’o..
Publications des sociétés d’histoire et d’archéologie d’Alsace (années 2005-2006)
Bas-Rhin Société Academique du Bas-Rhin Bulletin – tome CXXV-CXXVI Les grandes compagnies en Lorraine et en Alsace. De la paix de Brétigny à la mort de Charles V (1360-1380) par Geoffrey GRILL 1ère partie : Les compagnies – Chapitre I : Organisation et premières apparitions à l’est du royaume de France : Les routiers, ces inconditionnels de la guerre ; Les premières incursions en Lorraine et en Alsace ; Deux figures marquantes de l’histoire des compagnies en Alsace : Arnaud de Cervole et Engu..
Publications des sociétés d’histoire et d’archéologie d’Alsace (années 2006-2007)
Bas-Rhin Société d’histoire d’Alsace Bossue Cahier n° 55 (2007) R. LETSCHER, Légende de Tieffenbach ; Ph. JEHIN, Tieffenbach au XVIIIe siècle : les hommes et leur environnement ; R. BRODT, De la Nouvelle Orléans à Tieffenbach, une histoire à l’envers ; R. BALLIET, Réponse à l’histoire à l’envers ; R. BRODT, Le décor de la maison paysanne de Tieffenbach ; C. MULLER, L’historique de Tieffenbach ; M. BIEBER, Tieffenbach et ses églises. Cahier n° 56 (2007) Tieffenbach : Souvenirs du pasteur Char..
Alsace - Histoire
Une nouvelle collection est née sous l’égide de la Fédération des Sociétés d’histoire et d’archéologie d’Alsace Cette collection ne prétend pas tenir lieu d’encyclopédie ni de somme documentaire à usage pédagogique même si, par souci d’attractivité, les auteurs s’efforcent d’alléger le texte et s’attachent à consacrer 25 à 30 % du volume à l’iconographie. Chaque fascicule (entre 110 et 150 pages) est une initiation à la manière de conduire les recherches historiques et un guide susceptible de..
Crystal Structures of Cif from Bacterial Pathogens Photorhabdus luminescens and Burkholderia pseudomallei
A pre-requisite for bacterial pathogenesis is the successful interaction of a pathogen with a host. One mechanism used by a broad range of Gram negative bacterial pathogens is to deliver effector proteins directly into host cells through a dedicated type III secretion system where they modulate host cell function. The cycle inhibiting factor (Cif) family of effector proteins, identified in a growing number of pathogens that harbour functional type III secretion systems and have a wide host range, arrest the eukaryotic cell cycle. Here, the crystal structures of Cifs from the insect pathogen/nematode symbiont Photorhabdus luminescens (a γ-proteobacterium) and human pathogen Burkholderia pseudomallei (a β-proteobacterium) are presented. Both of these proteins adopt an overall fold similar to the papain sub-family of cysteine proteases, as originally identified in the structure of a truncated form of Cif from Enteropathogenic E. coli (EPEC), despite sharing only limited sequence identity. The structure of an N-terminal region, referred to here as the ‘tail-domain’ (absent in the EPEC Cif structure), suggests a surface likely to be involved in host-cell substrate recognition. The conformation of the Cys-His-Gln catalytic triad is retained, and the essential cysteine is exposed to solvent and addressable by small molecule reagents. These structures and biochemical work contribute to the rapidly expanding literature on Cifs, and direct further studies to better understand the molecular details of the activity of these proteins
Pathogenic Bacteria Target NEDD8-Conjugated Cullins to Hijack Host-Cell Signaling Pathways
The cycle inhibiting factors (Cif), produced by pathogenic bacteria isolated from vertebrates and invertebrates, belong to a family of molecules called cyclomodulins that interfere with the eukaryotic cell cycle. Cif blocks the cell cycle at both the G1/S and G2/M transitions by inducing the stabilization of cyclin-dependent kinase inhibitors p21waf1 and p27kip1. Using yeast two-hybrid screens, we identified the ubiquitin-like protein NEDD8 as a target of Cif. Cif co-compartmentalized with NEDD8 in the host cell nucleus and induced accumulation of NEDD8-conjugated cullins. This accumulation occurred early after cell infection and correlated with that of p21 and p27. Co-immunoprecipitation revealed that Cif interacted with cullin-RING ubiquitin ligase complexes (CRLs) through binding with the neddylated forms of cullins 1, 2, 3, 4A and 4B subunits of CRL. Using an in vitro ubiquitylation assay, we demonstrate that Cif directly inhibits the neddylated CUL1-associated ubiquitin ligase activity. Consistent with this inhibition and the interaction of Cif with several neddylated cullins, we further observed that Cif modulates the cellular half-lives of various CRL targets, which might contribute to the pathogenic potential of diverse bacteria
Cycle inhibiting factors (CIFs) are a growing family of functional cyclomodulins present in invertebrate and mammal bacterial pathogens.
The cycle inhibiting factor (Cif) produced by enteropathogenic and enterohemorrhagic Escherichia coli was the first cyclomodulin to be identified that is injected into host cells via the type III secretion machinery. Cif provokes cytopathic effects characterized by G(1) and G(2) cell cycle arrests, accumulation of the cyclin-dependent kinase inhibitors (CKIs) p21(waf1/cip1) and p27(kip1) and formation of actin stress fibres. The X-ray crystal structure of Cif revealed it to be a divergent member of a superfamily of enzymes including cysteine proteases and acetyltransferases that share a conserved catalytic triad. Here we report the discovery and characterization of four Cif homologs encoded by different pathogenic or symbiotic bacteria isolated from vertebrates or invertebrates. Cif homologs from the enterobacteria Yersinia pseudotuberculosis, Photorhabdus luminescens, Photorhabdus asymbiotica and the beta-proteobacterium Burkholderia pseudomallei all induce cytopathic effects identical to those observed with Cif from pathogenic E. coli. Although these Cif homologs are remarkably divergent in primary sequence, the catalytic triad is strictly conserved and was shown to be crucial for cell cycle arrest, cytoskeleton reorganization and CKIs accumulation. These results reveal that Cif proteins form a growing family of cyclomodulins in bacteria that interact with very distinct hosts including insects, nematodes and humans
The three residues of the Cif<sub>Ec</sub> catalytic triad are conserved among members of the Cif protein family.
<p>(A) ClustalW alignment between Cif<sub>Ec</sub>, Cif<sub>Yp</sub>, Cif<sub>Bp</sub>, Cif<sub>Pl</sub>, Cif<sub>Pa</sub> and GOS_5485515. Fully conserved residues are indicated by a red background and amino acids conserved more than 60 or 80% are indicated by a yellow or an orange background respectively. The cysteine, histidine and glutamine residues that form the catalytic triad of Cif<sub>Ec</sub> are indicated with blue stars. (B) Position of the fully conserved residues in the three dimensional structure of Cif<sub>Ec</sub>. Side chain carbon atoms of residues comprising the catalytic triad are coloured cyan. The remaining fully conserved residues cluster in three regions, as described in the text. Residues coloured yellow, including glycine positions indicated by spheres, are P107, G110, A113, N159, L163-G164, S186-G189, G191, D200-W201; in green are D170, D172, E264-D266; in purple are K118-L119 and N273.</p
Lipofection of purified Cif<sub>Bp</sub>, Cif<sub>Pl</sub> and Cif<sub>Pa</sub> proteins into HeLa cells induce cell cycle arrest and stress fibres formation akin to Cif<sub>Ec</sub>.
<p>G<sub>1</sub>/S synchronized HeLa cells were treated with purified proteins or PBS in combination with a lipidic delivery agent (BioPORTER). Upper panels: F-actin was stained with phalloidin-rhodamine (red) and DNA with DAPI (blue) 72 h post-treatment. Bars represent 20 µm. Lower panels: cell cycle distribution was analysed by flow cytometry 20 h post-treatment. Percentages of cells with 4N DNA content are indicated.</p