4 research outputs found

    Benefits of Cardamom (Elettaria cardamomum (L.) Maton) and Turmeric (Curcuma longa L.) Extracts for Their Applications as Natural Anti-Inflammatory Adjuvants

    No full text
    The genus Zingiberaceae has been widely used for phytotherapeutic purposes in traditional medicine throughout the world for its anti-inflammatory activity. Experimental studies have established that inflammation caused by chronic infections represents a risk factor for different forms of cancer. The objective of this study was focused on determining the anti-inflammatory capacity and cytotoxic activity of aqueous extracts of Elettaria cardamomum (cardamom) and Curcuma Longa (turmeric). The extracts were obtained by maceration and, through GC-MS/MS, a total of 11 different chemical components were determined in the aqueous extract of cardamom and 7 in the extract of turmeric. The main compounds found in cardamom and turmeric were α-terpinyl acetate (54.46%) and β-turmerone (33.45%), respectively. RT-qPCR results showed significantly lower gene expression levels of innate inflammatory cytokines (IL-6 and TNF-α) compared to the control (LPS). Also, it was observed that the extracts do not possess cytotoxic activity against different cell lines, where E. cardamomum showed EC50 (µg/mL) of 473.84 (HeLa cells), 237.36 (J774A.1 cells), 257.51 (Vero E6 cells), and 431.16 (Balb/C peritoneal cells) and C. longa showed EC50 (µg/mL) of 351.17 (HeLa cells), 430.96 (J774A.1 cells), 396.24 (Vero E6 cells), and 362.86 (Balb/C peritoneal cells). The results of this research suggest that natural extracts of E. cardamomum and C. longa possess anti-inflammatory effects and no cytotoxic activity against HeLa, J774A.1, Vero E6, and Balb/C peritoneal cell lines. Finally, it was observed that the extracts also decreased nitric oxide (NO) production in peritoneal macrophages

    Green Synthesis of Silver Nanoparticles and Their Bactericidal and Antimycotic Activities against Oral Microbes

    Get PDF
    Nanotechnology is a new discipline with huge applications including medicine and pharmacology industries. Although several methods and reducing agents have been employed to synthesize silver nanoparticles, reactive chemicals promote toxicity and nondesired effects on the human and biological systems. The objective of this work was to synthesize silver nanoparticles from Glycyrrhiza glabra and Amphipterygium adstringens extracts and determine their bactericidal and antimycotic activities against Enterococcus faecalis and Candida albicans growth, respectively. 1 and 10 mM silver nitrate were mixed with an extract of Glycyrrhiza glabra and Amphipterygium adstringens. Green silver nanoparticles (AgNPs) were characterized by TEM, Vis-NIR, FTIR, fluorescence, DLS, TGA, and X-ray diffraction (XRD) analysis. Bactericidal and antimycotic activities of AgNPs were determined by Kirby and Bauer method and cell viability MTT assays. AgNPs showed a spherical shape and average size of 9 nm if prepared with Glycyrrhiza glabra extract and 3 nm if prepared with Amphipterygium adstringens extract. AgNPs inhibited the bacterial and fungal growth as was expected, without a significant cytotoxic effect on human epithelial cells. Altogether, these results strongly suggest that AgNPs could be an interesting option to control oral biofilms

    Preliminary Study of the Antimicrobial, Anticoagulant, Antioxidant, Cytotoxic, and Anti-Inflammatory Activity of Five Selected Plants with Therapeutic Application in Dentistry

    No full text
    The usefulness of traditional plants in Mexico to treat human ailments has been known since ancient times. This work evaluated the antimicrobial, anticoagulant, antioxidant, cytotoxic, and anti-inflammatory potential of ethanolic extracts of Aloe vera, Equisetum arvense, Mimosa tenuiflora, Lippia graveolens, and Syzygium aromaticum. The antimicrobial activity of the extracts was evaluated against Streptococcus mutans and Streptococcus sorbinus; a significant inhibitory effect of the L. graveolens extract on both bacteria was observed at concentration levels of 250 µg/mL and greater. The anticoagulant activity was evaluated in terms of prothrombin time (PT) and activated partial thromboplastin time (APTT), A. vera and M. tenuiflora extracts showed no significant difference (p ˂ 0.05) in PT compared with the control, and for APTT the extracts of A. vera, L. graveolens, and S. aromaticum decreased the APTT significantly (p ˂ 0.05) compared with the control. The antioxidant potential by DPPH assay indicated that the E. arvense extract behaved statistically the same as the control. The cytotoxic activity was evaluated in HGF-1 cells using the fluorometric microculture cytotoxicity assay technique, and none of the extracts was toxic at 125 and 250 µg/mL concentrations. Finally, the anti-inflammatory activity was evaluated using ELISA, where the A. vera extract showed the best anti-inflammatory capacity. Further research on the search for bioactive metabolites and elucidation of action mechanisms of the most promising extracts will be carried out

    Compilación de Proyectos de Investigacion de 1984-2002

    No full text
    Instituto Politecnico Nacional. UPIICS
    corecore