113 research outputs found

    On visual pigment templates and the spectral shape of invertebrate rhodopsins and metarhodopsins

    Get PDF
    The absorbance spectra of visual pigments can be approximated with mathematical expressions using as single parameter the absorbance peak wavelength. A comparison of the formulae of Stavenga et al. in Vision Res 33:1011–1017 (1993) and Govardovskii et al. in Vis Neurosci 17:509–528 (2000) applied to a number of invertebrate rhodopsins reveals that both templates well describe the normalized α-band of rhodopsins with peak wavelength > 400 nm; the template spectra are virtually indistinguishable in an absorbance range of about three log units. The template formulae of Govardovskii et al. in Vis Neurosci 17:509–528 (2000) describe the rhodopsin spectra better for absorbances below 10−3. The template predicted spectra deviate in the ultraviolet wavelength range from each other as well as from measured spectra, preventing a definite conclusion about the spectral shape in the wavelength range <400 nm. The metarhodopsin spectra of blowfly and fruitfly R1-6 photoreceptors derived from measured data appear to be virtually identical. The established templates describe the spectral shape of fly metarhodopsin reasonably well. However, the best fitting template spectrum slightly deviates from the experimental spectra near the peak and in the long-wavelength tail. Improved formulae for fitting the fly metarhodopsin spectra are proposed

    Synthesis and Self-Assembly of Well-Defined Block Copolypeptides via Controlled NCA Polymerization

    Full text link
    This article summarizes advances in the synthesis of well-defined polypeptides and block copolypeptides. Traditional methods used to polymerize α-amino acid-N-carboxyanhydrides (NCAs) are described, and limitations in the utility of these systems for the preparation of polypeptides are discussed. Improved initiators and methods that allow polypeptide synthesis with good control over chain length, chain length distribution, and chain-end functionality are also discussed. Using these methods, block and random copolypeptides of controlled dimensions (including molecular weight, sequence, composition, and molecular weight distribution) can now be prepared. The ability of well-defined block copolypeptides to assemble into supramolecular copolypeptide micelles, copolypeptide vesicles, and copolypeptide hydrogels is described. Many of these assemblies have been found to possess unique properties that are derived from the amino acid building blocks and ordered conformations of the polypeptide segments. © Springer-Verlag Berlin Heidelberg 2013

    Crips & Queers: Telling Our Stories

    No full text
    corecore