15 research outputs found

    БСпсис-ассоциированная энцСфалопатия (ΠΎΠ±Π·ΠΎΡ€)

    Get PDF
    International studies demonstrate an annual increase in the frequency and impact of sepsis in intensive care units (ICU). Cerebral dysfunction, or so-called sepsis-associated encephalopathy (SAE), is one of the earliest signs of sepsis, as well as its common complication. Up to 70% of patients with sepsis have symptoms of encephalopathy [1, 2]. A direct link between the SAE and an increased mortality rate is a major concern; more than a half of sepsis survivors experience continuous memory and concentration impairment [3β€”5]. Diagnosis of the cerebral dysfunction in sepsis is often difficult because of lack of specific biomarkers and frequent prescription of sedatives to critically ill patients. Clinical manifestations of SAE are diverse, may vary from simple malaise and lack of concentration to deep coma. The literature discusses probable mechanisms of formation and development of septic encephalopathy, such as oxidative stress, inflammation, mitochondrial and endothelial dysfunction, increased permeability of the blood-brain barrier, impairment of macro- and microcirculation, changes in neirotransmission, activation of microglia. The lack of clear data and consensus about the etiology and mechanisms of SAE at present does not permit predicting its development and prescribing a specific therapy. The review discusses current understanding of the causes of septic encephalopathy, methods of diagnosis, the main clinical manifestations, key mediators, and pathophysiological mechanisms. A hypothesis is proposed that poses a contribution of aromatic microbial metabolites (AMM) of phenol and indole nature (products of bacterial biodegradation of tyrosine and tryptophan) to the development of brain dysfunction. The fields of exploratory studies, which might open perspectives in the diagnosis, as well as new approaches in the treatment of SAE are outlined.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΌΠ΅ΠΆΠ΄ΡƒΠ½Π°Ρ€ΠΎΠ΄Π½Ρ‹Ρ… исслСдований ΡƒΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ Π½Π° Π΅ΠΆΠ΅Π³ΠΎΠ΄Π½Ρ‹ΠΉ рост частоты ΠΈ Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ сСпсиса Π² Ρ€Π΅Π°Π½ΠΈΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… отдСлСниях. Одним ΠΈΠ· Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Ρ€Π°Π½Π½ΠΈΡ… ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ², Π° Ρ‚Π°ΠΊΠΆΠ΅ частым ослоТнСниСм сСпсиса являСтся дисфункция ΠΌΠΎΠ·Π³Π° ΠΈΠ»ΠΈ Ρ‚Π°ΠΊ называСмая сСпсис-ассоциированная энцСфалопатия (SAE). Π”ΠΎ 70% Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… с сСпсисом ΠΈΠΌΠ΅ΡŽΡ‚ симптомы энцСфалопатии [1, 2]. ОсобоС бСспокойство Π²Ρ‹Π·Ρ‹Π²Π°Π΅Ρ‚ Ρ„Π°ΠΊΡ‚ прямой связи SAE с ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½ΠΎΠΉ Π»Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒΡŽ, Π° срСди Π²Ρ‹ΠΆΠΈΠ²ΡˆΠΈΡ… послС сСпсиса Π±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Ρ‹ ΠΈΠΌΠ΅ΡŽΡ‚ Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΊΠΎΠ³Π½ΠΈΡ‚ΠΈΠ²Π½Ρ‹Π΅ расстройства, Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ памяти ΠΈ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ внимания [3β€”5]. Диагностика дисфункции ΠΌΠΎΠ·Π³Π° ΠΏΡ€ΠΈ сСпсисС часто Π·Π°Ρ‚Ρ€ΡƒΠ΄Π½Π΅Π½Π° ΠΈΠ·-Π·Π° отсутствия спСцифичСских Π±ΠΈΠΎΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠ², Π° Ρ‚Π°ΠΊΠΆΠ΅ Π² связи с частым ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ сСдативных ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² Ρƒ критичСских Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ…. ΠšΠ»ΠΈΠ½ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ проявлСния SAE Ρ€Π°Π·Π½ΠΎΠΎΠ±Ρ€Π°Π·Π½Ρ‹, ΠΌΠΎΠ³ΡƒΡ‚ Π²Π°Ρ€ΡŒΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΎΡ‚ простого нСдомогания ΠΈ нСдостатка ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ внимания Π΄ΠΎ Π³Π»ΡƒΠ±ΠΎΠΊΠΎΠΉ ΠΊΠΎΠΌΡ‹. Π’ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ ΠΎΠ±ΡΡƒΠΆΠ΄Π°ΡŽΡ‚ΡΡ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅ΠΌΡ‹Π΅ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ формирования ΠΈ развития сСптичСской энцСфалопатии, Ρ‚Π°ΠΊΠΈΠ΅ ΠΊΠ°ΠΊ ΠΎΠΊΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ стрСсс, воспалСниС, ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½Π°Ρ ΠΈ ΡΠ½Π΄ΠΎΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½Π°Ρ дисфункция, ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ проницаСмости гСматоэнцСфаличСского Π±Π°Ρ€ΡŒΠ΅Ρ€Π°, Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ ΠΌΠ°ΠΊΡ€ΠΎ- ΠΈ микроциркуляции, ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ нСйротрансмиссии, активация ΠΌΠΈΠΊΡ€ΠΎΠ³Π»ΠΈΠΈ. ΠžΡ‚ΡΡƒΡ‚ΡΡ‚Π²ΠΈΠ΅ Ρ‡Π΅Ρ‚ΠΊΠΈΡ… Π΄Π°Π½Π½Ρ‹Ρ… ΠΈ Π΅Π΄ΠΈΠ½ΠΎΠ³ΠΎ мнСния ΠΎ происхоТдСнии ΠΈ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ°Ρ… SAE Π² настоящСС врСмя Π½Π΅ позволяСт ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π΅Π΅ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ ΠΈ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½ΡƒΡŽ Ρ‚Π΅Ρ€Π°ΠΏΠΈΡŽ. Π’ ΠΎΠ±Π·ΠΎΡ€Π΅ ΠΎΠ±ΡΡƒΠΆΠ΄Π°ΡŽΡ‚ΡΡ соврСмСнныС прСдставлСния ΠΎ ΠΏΡ€ΠΈΡ‡ΠΈΠ½Π°Ρ… развития сСптичСской энцСфалопатии, ΠΌΠ΅Ρ‚ΠΎΠ΄Π°Ρ… диагностики, рассмотрСны основныС клиничСскиС проявлСния, ΠΊΠ»ΡŽΡ‡Π΅Π²Ρ‹Π΅ ΠΌΠ΅Π΄ΠΈΠ°Ρ‚ΠΎΡ€Ρ‹, патофизиологичСскиС ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° Π³ΠΈΠΏΠΎΡ‚Π΅Π·Π° ΠΎ Ρ€ΠΎΠ»ΠΈ ароматичСских ΠΌΠΈΠΊΡ€ΠΎΠ±Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΡ‚ΠΎΠ² (АММ) Ρ„Π΅Π½ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΈ индольной ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρ‹ β€” ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Π±ΠΈΠΎΠ΄Π΅Π³Ρ€Π°Π΄Π°Ρ†ΠΈΠΈ Ρ‚ΠΈΡ€ΠΎΠ·ΠΈΠ½Π° ΠΈ Ρ‚Ρ€ΠΈΠΏΡ‚ΠΎΡ„Π°Π½Π° β€” Π² Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠΈ дисфункции ΠΌΠΎΠ·Π³Π°, Π½Π°ΠΌΠ΅Ρ‡Π΅Π½Ρ‹ направлСния поисковых исслСдований, ΠΎΡ‚ΠΊΡ€Ρ‹Π²Π°ΡŽΡ‰ΠΈΠ΅ пСрспСктивы Π² диагностикС ΠΈ Π½ΠΎΠ²Ρ‹Π΅ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹ Π² Π»Π΅Ρ‡Π΅Π½ΠΈΠΈ SAE

    НСйропротСктивноС дСйствиС Ρ…Π»ΠΎΡ€ΠΈΠ΄Π° лития Π½Π° ΠΌΠΎΠ΄Π΅Π»ΠΈ остановки сСрдца Ρƒ крыс

    Get PDF
    Lithium chloride, which is used for the treatment of bipolar disorders, has a neuroprotective effect in conditions associated with acute and chronic circulatory disorders.The purpose of the study: to investigate the efficacy of lithium chloride for the prevention of post-resuscitation death of hippocampal neurons during the post-resuscitation period.Material and methods. Cardiac arrest for 10 minutes was evoked in mature male rats by intrathoracic clumping of the vascular bundle of the heart, followed by resuscitation. 40 mg/kg or 20 mg/kg of 4,2% lithium chloride (LiCl) was injected intraperitoneally 1 hour before cardiac arrest, on the 1st and 2nd day after resuscitation (n=9). Untreated animals received equivalent doses of saline (n=9). Rats after a sham surgery served as a reference group (n=10). The number of viable neurons in the CA1 and CA3/CA4 fields of the hippocampus was estimated in slides stained with cresyl violet by day 6 or 7 postresuscitation. In a separate series of experiments, at the same terms, we studied the effect of lithium chloride on the protein content of GSK3Ξ² (glycogen synthase kinase) in brain tissue using Western-Blot analysis.Results.Β Histological assay showed that a 10-minute cardiac arrest resulted in a decrease in the number of viable neurons in the hippocampal CA1 field β€” by 37.5% (P0.001), in the CA3/CA4 field β€” by 12.9% (P0.05) vs. the reference group. Lithium treatment increased the number of viable neurons in resuscitated rats β€” in the CA1 field by 37% (P<0.01), in the CA3/CA4 field β€” by 11.5% (P0.1) vs. the untreated animals. It was found that lithium caused an increase in phosphorylated form of GSK3Ξ²: by 180% vs. the reference group (P[1]0.05), and by 150% vs. the untreated animals (P0.05).Conclusion. Lithium treatment leads to a pronounced neuroprotection in the neuronal populations of the hippocampus post-resuscitation. This effect may be due to an increase in the content of the phosphorylated form of GSK3Ξ² protein. The results indicate a high potential of lithium for the prevention and treatment of neurodegenerative disorders caused by a temporary arrest of blood circulation.Β Π₯Π»ΠΎΡ€ΠΈΠ΄ лития, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹ΠΉ для ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ†ΠΈΠΈ биполярных расстройств, ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ Π½Π΅ΠΉΡ€ΠΎΠΏΡ€ΠΎΡ‚Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΌ эффСктом ΠΏΡ€ΠΈ состояниях, связанных с острым ΠΈ хроничСским Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ΠΌ кровообращСния Π² Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠΌ ΠΌΠΎΠ·Π³Π΅. ЦСль исслСдования β€” ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Ρ…Π»ΠΎΡ€ΠΈΠ΄Π° лития для прСдотвращСния Π³ΠΈΠ±Π΅Π»ΠΈ Π²Ρ‹ΡΠΎΠΊΠΎΡ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΊ гипоксии Π½Π΅ΠΉΡ€ΠΎΠ½ΠΎΠ² Π³ΠΈΠΏΠΏΠΎΠΊΠ°ΠΌΠΏΠ° Π² пострСанимационном ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π΅ послС Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ остановки сСрдца.Β ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠžΡΡ‚Π°Π½ΠΎΠ²ΠΊΡƒ сСрдца Ρƒ взрослых крыс-самцов Π½Π° 10 ΠΌΠΈΠ½ΡƒΡ‚ Π²Ρ‹Π·Ρ‹Π²Π°Π»ΠΈ ΠΏΡƒΡ‚Π΅ΠΌ Π²Π½ΡƒΡ‚Ρ€ΠΈΡ‚ΠΎΡ€Π°ΠΊΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ пСрСТатия сосудистого ΠΏΡƒΡ‡ΠΊΠ° сСрдца с ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ Ρ€Π΅Π°Π½ΠΈΠΌΠ°Ρ†ΠΈΠ΅ΠΉ. 9-Ρ‚ΠΈ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹ΠΌ Π²Π²ΠΎΠ΄ΠΈΠ»ΠΈ раствор 4,2% LiCl Π·Π° 1 час Π΄ΠΎ остановки сСрдца (40 ΠΌΠ³/ΠΊΠ³ Π²/Π±), Π½Π° 1-Π΅ ΠΈ Π½Π° 2-Π΅ сутки послС Ρ€Π΅Π°Π½ΠΈΠΌΠ°Ρ†ΠΈΠΈ (20 ΠΌΠ³/ΠΊΠ³ Π²/Π±, соотвСтствСнно). 9 Π½Π΅Π»Π΅Ρ‡Π΅Π½Ρ‹Ρ… ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… Π² Ρ‚Π΅ ΠΆΠ΅ сроки ΠΏΠΎΠ»ΡƒΡ‡Π°Π»ΠΈ эквивалСнтныС Π΄ΠΎΠ·Ρ‹ физиологичСского раствора Ρ…Π»ΠΎΡ€ΠΈΠ΄Π° натрия. ΠšΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅ΠΌ слуТили Π»ΠΎΠΆΠ½ΠΎΠΏΠ΅Ρ€ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ крысы (n=10). Π§Π΅Ρ€Π΅Π· 7 Π΄Π½Π΅ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ морфомСтричСского Π°Π½Π°Π»ΠΈΠ·Π° ΠΎΡ†Π΅Π½ΠΈΠ»ΠΈ число ТизнСспособных Π½Π΅ΠΉΡ€ΠΎΠ½ΠΎΠ² Π² полях БА1 ΠΈ БА3/БА4 Π³ΠΈΠΏΠΏΠΎΠΊΠ°ΠΌΠΏΠ° Π½Π° срСзах, ΠΎΠΊΡ€Π°ΡˆΠ΅Π½Π½Ρ‹Ρ… ΠΊΡ€Π΅Π·ΠΈΠ»ΠΎΠ²Ρ‹ΠΌ Ρ„ΠΈΠΎΠ»Π΅Ρ‚ΠΎΠ²Ρ‹ΠΌ ΠΏΠΎ Нисслю. Π’ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎΠΉ сСрии экспСримСнтов с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Western-Blot Π°Π½Π°Π»ΠΈΠ·Π° Π² эти ΠΆΠ΅ сроки исслСдовали влияниС Ρ…Π»ΠΎΡ€ΠΈΠ΄Π° лития Π½Π° содСрТаниС Π±Π΅Π»ΠΊΠ° GSK3Ξ² (ΠΊΠΈΠ½Π°Π·Π° гликогСнсинтазы ΠΊΠΈΠ½Π°Π·Ρ‹-3) Π² Ρ‚ΠΊΠ°Π½ΠΈ ΠΌΠΎΠ·Π³Π°. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ΠŸΡ€ΠΈ гистологичСском исслСдовании установили, Ρ‡Ρ‚ΠΎ 10-минутная остановка сСрдца ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ сниТСнию числа ТизнСспособных Π½Π΅ΠΉΡ€ΠΎΠ½ΠΎΠ² Π² ΠΏΠΎΠ»Π΅ БА1 Π³ΠΈΠΏΠΏΠΎΠΊΠ°ΠΌΠΏΠ° β€” Π½Π° 37,5% (p0,001), Π² ΠΏΠΎΠ»Π΅ БА3/БА4 β€” Π½Π° 12,9% (p0,05). ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ LiCl ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΠ»ΠΎ ΠΊ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΡŽ числа ТизнСспособных Π½Π΅ΠΉΡ€ΠΎΠ½ΠΎΠ² Π³ΠΈΠΏΠΏΠΎΠΊΠ°ΠΌΠΏΠ° Ρƒ Ρ€Π΅Π°Π½ΠΈΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… крыс Π² ΠΏΠΎΠ»Π΅ БА1 Π½Π° 37% (p0,01), Π² ΠΏΠΎΠ»Π΅ БА3/БА4 β€” Π½Π° 11,5% (p0,1) ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Π½Π΅Π»Π΅Ρ‡Π΅Π½Ρ‹ΠΌΠΈ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹ΠΌΠΈ.Β  ΠŸΡ€ΠΈ исслСдовании Π±Π΅Π»ΠΊΠ° GSK3Ξ² установили, Ρ‡Ρ‚ΠΎ Ρƒ Ρ€Π΅Π°Π½ΠΈΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ…, ΠΏΠΎΠ»ΡƒΡ‡Π°Π²ΡˆΠΈΡ… Ρ…Π»ΠΎΡ€ΠΈΠ΄ лития, содСрТаниС Π΅Π³ΠΎ фосфорилированной Ρ„ΠΎΡ€ΠΌΡ‹ Π² Ρ‚ΠΊΠ°Π½ΠΈ ΠΌΠΎΠ·Π³Π° Π±Ρ‹Π»ΠΎ Π²Ρ‹ΡˆΠ΅ Π½Π° 180% ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅ΠΌ (Ρ€0,05), ΠΈ Π½Π° 150% Π²Ρ‹ΡˆΠ΅, Ρ‡Π΅ΠΌ Ρƒ Π½Π΅Π»Π΅Ρ‡Π΅Π½Π½Ρ‹Ρ… ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… (Ρ€0,05).Β Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ…Π»ΠΎΡ€ΠΈΠ΄Π° лития Π² пострСанимационном ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π΅ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΠ»ΠΎ ΠΊ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½ΠΎΠΉ Π½Π΅ΠΉΡ€ΠΎΠΏΡ€ΠΎΡ‚Π΅ΠΊΡ†ΠΈΠΈ Π² Π½Π΅ΠΉΡ€ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… популяциях Π³ΠΈΠΏΠΏΠΎΠΊΠ°ΠΌΠΏΠ°. Π­Ρ‚ΠΎΡ‚ эффСкт ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ обусловлСн ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ΠΌ содСрТания фосфорилированной Ρ„ΠΎΡ€ΠΌΡ‹ Π±Π΅Π»ΠΊΠ° GSK3Ξ². ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‚ ΠΎ высоком ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Π΅ лития для ΠΏΡ€ΠΎΡ„ΠΈΠ»Π°ΠΊΡ‚ΠΈΠΊΠΈ ΠΈ лСчСния Π½Π΅ΠΉΡ€ΠΎΠ΄Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠΉ, Π²Ρ‹Π·Π²Π°Π½Π½Ρ‹Ρ… Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ остановкой кровообращСния.

    Brain Morphological Changes in COVID-19

    Get PDF
    The aim of the study was to identify the pathomorphology of brain damage in patients who died of COVID-19.Material and methods. Autopsy reports and autopsy brain material of 17 deceased patients with premortem confirmed COVID-19 infection were analyzed. Fatal cases in which COVID-19 was the major cause of death were included in the study. Five people were diagnosed with cerebral infarction. Organ samples were taken for histological examination during autopsy. Sections were stained with hematoxylin and eosin and by Nissl to assess brain histopathology. To study the vascular basal membranes the PAS reaction was used, to detect fibrin in vessels phosphotungstic acid-hematoxylin (PTAH) staining was used, to determine DNA in nuclei sections were stained according to Feulgen, to detect RNA in neuronal nuclei and cytoplasm sections were stained with methyl green-pyronin. Immunohistochemical study of a neuronal marker, nuclear protein NeuN, was performed to assess neuronal damage.Results. The signs of neuronal damage found in patients who died of COVID-19 included nonspecific changes of nerve cells (acute swelling, retrograde degeneration, karyolysis and cytolysis, β€˜ghost' cells, neuronophagia and satellitosis) and signs of circulatory disorders (perivascular and pericellular edema, diapedesis, congested and engorged microvasculature).Conclusion. Brain histopathological data indicate damage to the central nervous system in COVID-19 patients. Ischemic stroke in patients with COVID-19 is mostly caused by a combination of hypoxia resulting from respiratory failure and individual risk factors, including cerebrovascular atherosclerosis and hypertension

    ΠœΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ измСнСния Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° ΠΏΡ€ΠΈ COVID-19

    Get PDF
    The aim of the study was to identify the pathomorphology of brain damage in patients who died of COVID-19.Material and methods. Autopsy reports and autopsy brain material of 17 deceased patients with premortem confirmed COVID-19 infection were analyzed. Fatal cases in which COVID-19 was the major cause of death were included in the study. Five people were diagnosed with cerebral infarction. Organ samples were taken for histological examination during autopsy. Sections were stained with hematoxylin and eosin and by Nissl to assess brain histopathology. To study the vascular basal membranes the PAS reaction was used, to detect fibrin in vessels phosphotungstic acid-hematoxylin (PTAH) staining was used, to determine DNA in nuclei sections were stained according to Feulgen, to detect RNA in neuronal nuclei and cytoplasm sections were stained with methyl green-pyronin. Immunohistochemical study of a neuronal marker, nuclear protein NeuN, was performed to assess neuronal damage.Results. The signs of neuronal damage found in patients who died of COVID-19 included nonspecific changes of nerve cells (acute swelling, retrograde degeneration, karyolysis and cytolysis, β€˜ghost' cells, neuronophagia and satellitosis) and signs of circulatory disorders (perivascular and pericellular edema, diapedesis, congested and engorged microvasculature).Conclusion. Brain histopathological data indicate damage to the central nervous system in COVID-19 patients. Ischemic stroke in patients with COVID-19 is mostly caused by a combination of hypoxia resulting from respiratory failure and individual risk factors, including cerebrovascular atherosclerosis and hypertension.ЦСль исслСдования β€” Π²Ρ‹ΡΠ²ΠΈΡ‚ΡŒ морфологичСскиС ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΈ поврСТдСния Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° ΡƒΠΌΠ΅Ρ€ΡˆΠΈΡ… ΠΎΡ‚ COVID-19.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠŸΡ€ΠΎΠ²Π΅Π»ΠΈ Π°Π½Π°Π»ΠΈΠ· ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠΎΠ»ΠΎΠ² вскрытий ΠΈ аутопсийного ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° 17 ΡƒΠΌΠ΅Ρ€ΡˆΠΈΡ… ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с ΠΏΡ€ΠΈΠΆΠΈΠ·Π½Π΅Π½Π½ΠΎ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½Π½ΠΎΠΉ ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠ΅ΠΉ Π‘OVID-19. Π’ исслСдованиС Π²ΠΊΠ»ΡŽΡ‡ΠΈΠ»ΠΈ случаи Π»Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ исхода, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… COVID-19 явилась основной ΠΏΡ€ΠΈΡ‡ΠΈΠ½ΠΎΠΉ смСрти. Π£ 5 Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊ диагностировали ΠΈΠ½Ρ„Π°Ρ€ΠΊΡ‚ Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π°. ΠšΡƒΡΠΎΡ‡ΠΊΠΈ ΠΎΡ€Π³Π°Π½ΠΎΠ² для гистологичСского исслСдования ΠΈΠ·Ρ‹ΠΌΠ°Π»ΠΈ Π² Ρ…ΠΎΠ΄Π΅ патологоанатомичСского исслСдования. Для выявлСния морфологичСских ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° срСзы ΠΎΠΊΡ€Π°ΡˆΠΈΠ²Π°Π»ΠΈ гСматоксилином ΠΈ эозином ΠΈ ΠΏΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ Ниссля. Для исслСдования состояния Π±Π°Π·Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ сосудов примСняли ШИК-Ρ€Π΅Π°ΠΊΡ†ΠΈΡŽ, для выявлСния Ρ„ΠΈΠ±Ρ€ΠΈΠ½Π° Π² сосудах использовали окраску гСматоксилином Π .Π’.А.Н. Ρ„ΠΎΡΡ„ΠΎΠ²ΠΎΠ»ΡŒΡ„Ρ€Π°ΠΌΠΎΠ²Ρ‹ΠΌ кислым, для выявлСния Π”ΠΠš Π² ядрах срСзы ΠΎΠΊΡ€Π°ΡˆΠΈΠ²Π°Π»ΠΈ ΠΏΠΎ Π€Π΅Π»ΡŒΠ³Π΅Π½Ρƒ, для выявлСния РНК Π² ядрах ΠΈ Ρ†ΠΈΡ‚ΠΎΠΏΠ»Π°Π·ΠΌΠ΅ Π½Π΅ΠΉΡ€ΠΎΠ½ΠΎΠ² срСзы красили ΠΌΠ΅Ρ‚ΠΈΠ»ΠΎΠ²Ρ‹ΠΌ Π·Π΅Π»Π΅Π½Ρ‹ΠΌ ΠΏΠΈΡ€ΠΎΠ½ΠΈΠ½ΠΎΠΌ. Для ΠΎΡ†Π΅Π½ΠΊΠΈ поврСТдСния Π½Π΅ΠΉΡ€ΠΎΠ½ΠΎΠ² ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ иммуногистохимичСскоС (Π˜Π“Π₯) исслСдованиС Π½Π΅ΠΉΡ€ΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π° β€” ядСрного Π±Π΅Π»ΠΊΠ° NeuN.Β  Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Выявили ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΈ поврСТдСния Π½Π΅ΠΉΡ€ΠΎΠ½ΠΎΠ² Ρƒ ΡƒΠΌΠ΅Ρ€ΡˆΠΈΡ… ΠΎΡ‚ COVID-19, Π·Π°ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Π² нСспСцифичСских измСнСниях Π½Π΅Ρ€Π²Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ (остроС Π½Π°Π±ΡƒΡ…Π°Π½ΠΈΠ΅, ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½ΠΎΠ΅ Ρ€Π°Π·Π΄Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅, ΠΊΠ°Ρ€ΠΈΠΎΡ†ΠΈΡ‚ΠΎΠ»ΠΈΠ·, ΠΊΠ»Π΅Ρ‚ΠΊΠΈ-Ρ‚Π΅Π½ΠΈ, нСйронофагия ΠΈ саттСлитоз) ΠΈ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°Ρ… Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ кровообращСния (пСриваскулярный ΠΈ ΠΏΠ΅Ρ€ΠΈΡ†Π΅Π»Π»ΡŽΠ»ΡΡ€Π½Ρ‹ΠΉ ΠΎΡ‚Π΅ΠΊ, Π΄ΠΈΠ°ΠΏΠ΅Π΄Π΅Π·Π½Ρ‹Π΅ кровоизлияния, стазы, ΠΏΠΎΠ»Π½ΠΎΠΊΡ€ΠΎΠ²ΠΈΠ΅ сосудов микроциркуляторного русла).Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ΠœΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ измСнСния Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‚ ΠΎ ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠΈ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ Π½Π΅Ρ€Π²Π½ΠΎΠΉ систСмы Ρƒ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… COVID-19. Π˜ΡˆΠ΅ΠΌΠΈΡ‡Π΅ΡΠΊΠΈΠΉ ΠΈΠ½ΡΡƒΠ»ΡŒΡ‚ Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с COVID-19 Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΠΌ обусловлСн сочСтаниСм гипоксии, Ρ€Π°Π·Π²ΠΈΠ²Π°ΡŽΡ‰Π΅ΠΉΡΡ вслСдствиС Π΄Ρ‹Ρ…Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ нСдостаточности, ΠΈ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Ρƒ больного Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² риска β€” атСросклСроза Π°Ρ€Ρ‚Π΅Ρ€ΠΈΠΉ основания Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° ΠΈ гипСртоничСской Π±ΠΎΠ»Π΅Π·Π½ΠΈ

    Sepsis-Associated Encephalopathy (Review)

    No full text
    International studies demonstrate an annual increase in the frequency and impact of sepsis in intensive care units (ICU). Cerebral dysfunction, or so-called sepsis-associated encephalopathy (SAE), is one of the earliest signs of sepsis, as well as its common complication. Up to 70% of patients with sepsis have symptoms of encephalopathy [1, 2]. A direct link between the SAE and an increased mortality rate is a major concern; more than a half of sepsis survivors experience continuous memory and concentration impairment [3β€”5]. Diagnosis of the cerebral dysfunction in sepsis is often difficult because of lack of specific biomarkers and frequent prescription of sedatives to critically ill patients. Clinical manifestations of SAE are diverse, may vary from simple malaise and lack of concentration to deep coma. The literature discusses probable mechanisms of formation and development of septic encephalopathy, such as oxidative stress, inflammation, mitochondrial and endothelial dysfunction, increased permeability of the blood-brain barrier, impairment of macro- and microcirculation, changes in neirotransmission, activation of microglia. The lack of clear data and consensus about the etiology and mechanisms of SAE at present does not permit predicting its development and prescribing a specific therapy. The review discusses current understanding of the causes of septic encephalopathy, methods of diagnosis, the main clinical manifestations, key mediators, and pathophysiological mechanisms. A hypothesis is proposed that poses a contribution of aromatic microbial metabolites (AMM) of phenol and indole nature (products of bacterial biodegradation of tyrosine and tryptophan) to the development of brain dysfunction. The fields of exploratory studies, which might open perspectives in the diagnosis, as well as new approaches in the treatment of SAE are outlined

    Neuroprotective Effect of Lithium Chloride in Rat Model of Cardiac Arrest

    Get PDF
    Lithium chloride, which is used for the treatment of bipolar disorders, has a neuroprotective effect in conditions associated with acute and chronic circulatory disorders.The purpose of the study: to investigate the efficacy of lithium chloride for the prevention of post-resuscitation death of hippocampal neurons during the post-resuscitation period.Material and methods. Cardiac arrest for 10 minutes was evoked in mature male rats by intrathoracic clumping of the vascular bundle of the heart, followed by resuscitation. 40 mg/kg or 20 mg/kg of 4,2% lithium chloride (LiCl) was injected intraperitoneally 1 hour before cardiac arrest, on the 1st and 2nd day after resuscitation (n=9). Untreated animals received equivalent doses of saline (n=9). Rats after a sham surgery served as a reference group (n=10). The number of viable neurons in the CA1 and CA3/CA4 fields of the hippocampus was estimated in slides stained with cresyl violet by day 6 or 7 postresuscitation. In a separate series of experiments, at the same terms, we studied the effect of lithium chloride on the protein content of GSK3Ξ² (glycogen synthase kinase) in brain tissue using Western-Blot analysis.Results.Β Histological assay showed that a 10-minute cardiac arrest resulted in a decrease in the number of viable neurons in the hippocampal CA1 field β€” by 37.5% (P0.001), in the CA3/CA4 field β€” by 12.9% (P0.05) vs. the reference group. Lithium treatment increased the number of viable neurons in resuscitated rats β€” in the CA1 field by 37% (P<0.01), in the CA3/CA4 field β€” by 11.5% (P0.1) vs. the untreated animals. It was found that lithium caused an increase in phosphorylated form of GSK3Ξ²: by 180% vs. the reference group (P[1]0.05), and by 150% vs. the untreated animals (P0.05).Conclusion. Lithium treatment leads to a pronounced neuroprotection in the neuronal populations of the hippocampus post-resuscitation. This effect may be due to an increase in the content of the phosphorylated form of GSK3Ξ² protein. The results indicate a high potential of lithium for the prevention and treatment of neurodegenerative disorders caused by a temporary arrest of blood circulation

    Prognostic Value and Therapeutic Potential of Brain-Derived Neurotrophic Factor (BDNF) in Brain Injuries (Review)

    Get PDF
    Neurotrophins are proteins that play an important role in the nervous system functioning by regulating cell proliferation, differentiation, processes of neuronal survival and death, and by participating in the mechanisms of neuronal plasticity. The brain-derived neurotrophic factor (BDNF) is one of the most well-described representatives of the neurotrophin family, which has received close attention over recent years. It is considered one of the key mediators of neuronal survival and recovery, and a drop of the BDNF level is considered a common mechanism underlying the development of various neurodegenerative diseases. The review discusses changes in BDNF levels in ischemic and traumatic brain damage, the prospects of its use in the clinical practice as a marker of brain dysfunction, as well as the possibility of its use for the treatment of post-ischemic encephalopathies
    corecore