699 research outputs found

    Alcohol-Paired Contextual Cues Produce an Immediate and Selective Loss of Goal-directed Action in Rats

    Get PDF
    We assessed whether the presence of contextual cues paired with alcohol would disrupt rats’ capacity to express appropriate goal-directed action control. Rats were first given differential context conditioning such that one set of contextual cues was paired with the injection of ethanol and a second, distinctive set of cues was paired with the injection of saline. All rats were then trained in a third, neutral context to press one lever for grain pellets and another lever for sucrose pellets. They were then given two extinction tests to evaluate their ability to choose between the two actions in response to the devaluation of one of the two food outcomes with one test conducted in the alcohol-paired context and the other conducted in the control (saline-paired) context. In the control context, rats exhibited goal-directed action control; i.e., they were able selectively to withhold the action that previously earned the now devalued outcome. However, these same rats were impaired when tested in the alcohol-paired context, performing both actions at the same rate regardless of the current value of their respective outcomes. Subsequent testing revealed that the rats were capable of overcoming this impairment if they were giving response-contingent feedback about the current value of the food outcomes. These results provide a clear demonstration of the disruptive influence that alcohol-paired cues can exert on decision-making in general and goal-directed action selection and choice in particular

    Quasiperiodic Modulated-Spring Model

    Full text link
    We study the classical vibration problem of a chain with spring constants which are modulated in a quasiperiodic manner, {\it i. e.}, a model in which the elastic energy is jkj(uj1uj)2\sum_j k_j( u_{j-1}-{u_j})^2, where kj=1+Δcos[2πσ(j1/2)+θ]k_j=1+\Delta cos[2\pi\sigma(j-1/2)+\theta] and σ\sigma is an irrational number. For Δ<1\Delta < 1, it is shown analytically that the spectrum is absolutely continuous, {\it i.e.}, all the eigen modes are extended. For Δ=1\Delta=1, numerical scaling analysis shows that the spectrum is purely singular continuous, {\it i.e.}, all the modes are critical.Comment: REV TeX fil

    Universal criterion for the breakup of invariant tori in dissipative systems

    Full text link
    The transition from quasiperiodicity to chaos is studied in a two-dimensional dissipative map with the inverse golden mean rotation number. On the basis of a decimation scheme, it is argued that the (minimal) slope of the critical iterated circle map is proportional to the effective Jacobian determinant. Approaching the zero-Jacobian-determinant limit, the factor of proportion becomes a universal constant. Numerical investigation on the dissipative standard map suggests that this universal number could become observable in experiments. The decimation technique introduced in this paper is readily applicable also to the discrete quasiperiodic Schrodinger equation.Comment: 13 page

    Collision and symmetry-breaking in the transition to strange nonchaotic attractors

    Get PDF
    Strange nonchaotic attractors (SNAs) can be created due to the collision of an invariant curve with itself. This novel ``homoclinic'' transition to SNAs occurs in quasiperiodically driven maps which derive from the discrete Schr\"odinger equation for a particle in a quasiperiodic potential. In the classical dynamics, there is a transition from torus attractors to SNAs, which, in the quantum system is manifest as the localization transition. This equivalence provides new insights into a variety of properties of SNAs, including its fractal measure. Further, there is a {\it symmetry breaking} associated with the creation of SNAs which rigorously shows that the Lyapunov exponent is nonpositive. By considering other related driven iterative mappings, we show that these characteristics associated with the the appearance of SNA are robust and occur in a large class of systems.Comment: To be appear in Physical Review Letter

    Glassiness Vs. Order in Densely Frustrated Josephson Arrays

    Full text link
    We carry out extensive Monte Carlo simulations on the Coulomb gas dual to the uniformly frustrated two dimensional XY model, for a sequence of frustrations f converging to the irraltional (3-sqrt 5)/2. We find in these systems a sharp first order equilibrium phase transition to an ordered vortex structure at a T_c which varies only slightly with f. This ordered vortex structure remains in general phase incoherent until a lower pinning transition T_p(f) that varies with f. We argue that the glassy behaviors reported for this model in earlier simulations are dynamic effects.Comment: 4 pages, 4 eps figure

    Critical quantum chaos and the one dimensional Harper model

    Full text link
    We study the quasiperiodic Harper's model in order to give further support for a possible universality of the critical spectral statistics. At the mobility edge we numerically obtain a scale-invariant distribution of the bands SS, which is closely described by a semi-Poisson P(S)=4Sexp(2S)P(S)=4S \exp(-2S) curve. The exp(2S)\exp (-2S) tail appears when the mobility edge is approached from the metal while P(S)P(S) is asymptotically log-normal for the insulator. The multifractal critical density of states also leads to a sub-Poisson linear number variance Σ2(E)0.041E\Sigma_{2}(E)\propto 0.041E.Comment: 4 pages, 4 eps figure

    One-dimensional fermions with incommensuration

    Full text link
    We study the spectrum of fermions hopping on a chain with a weak incommensuration close to dimerization; both q, the deviation of the wave number from pi, and delta, the strength of the incommensuration, are small. For free fermions, we use a continuum Dirac theory to show that there are an infinite number of bands which meet at zero energy as q approaches zero. In the limit that the ratio q/ \delta --> 0, the number of states lying inside the q=0 gap is nonzero and equal to 2 \delta /\pi^2. Thus the limit q --> 0 differs from q=0; this can be seen clearly in the behavior of the specific heat at low temperature. For interacting fermions or the XXZ spin-1/2 chain close to dimerization, we use bosonization to argue that similar results hold; as q --> 0, we find a nontrivial density of states near zero energy. However, the limit q --> 0 and q=0 give the same results near commensurate wave numbers which are different from pi. We apply our results to the Azbel-Hofstadter problem of electrons hopping on a two-dimensional lattice in the presence of a magnetic field. Finally, we discuss the complete energy spectrum of noninteracting fermions with incommensurate hopping by going up to higher orders in delta.Comment: Revtex, 23 pages including 7 epsf figures; this is a greatly expanded version of cond-mat/981133

    Role of phason-defects on the conductance of a 1-d quasicrystal

    Full text link
    We have studied the influence of a particular kind of phason-defect on the Landauer resistance of a Fibonacci chain. Depending on parameters, we sometimes find the resistance to decrease upon introduction of defect or temperature, a behavior that also appears in real quasicrystalline materials. We demonstrate essential differences between a standard tight-binding model and a full continuous model. In the continuous case, we study the conductance in relation to the underlying chaotic map and its invariant. Close to conducting points, where the invariant vanishes, and in the majority of cases studied, the resistance is found to decrease upon introduction of a defect. Subtle interference effects between a sudden phason-change in the structure and the phase of the wavefunction are also found, and these give rise to resistive behaviors that produce exceedingly simple and regular patterns.Comment: 12 pages, special macros jnl.tex,reforder.tex, eqnorder.tex. arXiv admin note: original tex thoroughly broken, figures missing. Modified so that tex compiles, original renamed .tex.orig in source

    The Short Range RVB State of Even Spin Ladders: A Recurrent Variational Approach

    Full text link
    Using a recursive method we construct dimer and nondimer variational ansatzs of the ground state for the two-legged ladder, and compute the number of dimer coverings, the energy density and the spin correlation functions. The number of dimer coverings are given by the Fibonacci numbers for the dimer-RVB state and their generalization for the nondimer ones. Our method relies on the recurrent relations satisfied by the overlaps of the states with different lengths, which can be solved using generating functions. The recurrent relation method is applicable to other short range systems. Based on our results we make a conjecture about the bond amplitudes of the 2-leg ladder.Comment: REVTEX file, 32 pages, 10 EPS figures inserted in text with epsf.st
    corecore