107 research outputs found

    Recent studies of dispersion matched steering for the ILC bunch compressor and main linac

    Get PDF
    The Dispersion Matched Steering (DMS) method is studied in detail in the context of a curved main linac. In the absence of cavity tilts (rotations in the YZ plane), DMS provides a unique and stable solution with negligible emittance growth. If cavity tilts are about 300 {micro}rad, the algorithm is not very robust. The emittance growth through the entire linac for positrons is about 5 nm, if the system is strictly static and statistical averaging can be used to improve beam position measurements. This growth is mostly eliminated if the dispersion and its derivative at injection can be adjusted. If anticipated ground motion, beam and klystron jitter, beam position measurement resolution are introduced (i.e. dynamical case), the emittance preservation goal is currently not achieved by DMS alone. Mitigation strategies are outlined

    Hybrid Permanent Magnet Gradient Dipoles for the Recycler Ring at Fermilab

    Get PDF
    Abstract -Hybrid permanent magnets provide the magnetic fields for an anti-proton storage ring which is under construction at Fermilab. Using a combined function lattice, gradient magnets provide the bending, focusing and sextupole correction for the regular cells. Shorter magnets without sextupole are used in dispersion suppressor cells. These magnets use a 4.7 m ( 3 m) long iron shell for flux return, bricks of 25.4 mm thick strontium ferrite supply the flux and transversely tapered iron poles separated by aluminum spacers set the shape of the magnetic field. Central fields of 0.14 T with gradients of ≈6%/inch (≈13%/inch) are required. Field errors are expected to be less than 10 −4 of the bend field over an aperture of ±40 mm (horizontal) × ±20 mm (vertical). Design, procurement, fabrication, pole potential adjustment, field shape trimming and measured fields will be reported

    CD40-Activated B Cells Can Efficiently Prime Antigen-Specific Naïve CD8+ T Cells to Generate Effector but Not Memory T cells

    Get PDF
    Background: The identification of the signals that should be provided by antigen-presenting cells (APCs) to induce a CD8 + T cell response in vivo is essential to improve vaccination strategies using antigen-loaded APCs. Although dendritic cells have been extensively studied, the ability of other APC types, such as B cells, to induce a CD8 + T cell response have not been thoroughly evaluated. Methodology/Principal Findings: In this manuscript, we have characterized the ability of CD40-activated B cells, stimulated or not with Toll-like receptor (TLR) agonists (CpG or lipopolysaccharide) to induce the response of mouse naïve CD8 + T cells in vivo. Our results show that CD40-activated B cells can directly present antigen to naïve CD8 + T cells to induce the generation of potent effectors able to secrete cytokines, kill target cells and control a Listeria monocytogenes infection. However, CD40-activated B cell immunization did not lead to the proper formation of CD8 + memory T cells and further maturation of CD40-activated B cells with TLR agonists did not promote the development of CD8 + memory T cells. Our results also suggest that inefficient generation of CD8 + memory T cells with CD40-activated B cell immunization is a consequence of reduced Bcl-6 expression by effectors and enhanced contraction of the CD8 + T cell response. Conclusions: Understanding why CD40-activated B cell immunization is defective for the generation of memory T cells and gaining new insights about signals that should be provided by APCs are key steps before translating the use of CD40-B cel

    Muon (g-2) Technical Design Report

    Get PDF
    The Muon (g-2) Experiment, E989 at Fermilab, will measure the muon anomalous magnetic moment a factor-of-four more precisely than was done in E821 at the Brookhaven National Laboratory AGS. The E821 result appears to be greater than the Standard-Model prediction by more than three standard deviations. When combined with expected improvement in the Standard-Model hadronic contributions, E989 should be able to determine definitively whether or not the E821 result is evidence for physics beyond the Standard Model. After a review of the physics motivation and the basic technique, which will use the muon storage ring built at BNL and now relocated to Fermilab, the design of the new experiment is presented. This document was created in partial fulfillment of the requirements necessary to obtain DOE CD-2/3 approval
    • …
    corecore