118 research outputs found

    Methylated HNRNPK acts on RPS19 to regulate ALOX15 synthesis in erythropoiesis

    Get PDF
    Post-transcriptional control is essential to safeguard structural and metabolic changes in enucleated reticulocytes during their terminal maturation to functional erythrocytes. The timely synthesis of arachidonate 15-lipoxygenase (ALOX15), which initiates mitochondria degradation at the final stage of reticulocyte maturation is regulated by the multifunctional protein HNRNPK. It constitutes a silencing complex at the ALOX15 mRNA 3ā€² untranslated region that inhibits translation initiation at the AUG by impeding the joining of ribosomal 60S subunits to 40S subunits. To elucidate how HNRNPK interferes with 80S ribosome assembly, three independent screens were applied. They consistently demonstrated a differential interaction of HNRNPK with RPS19, which is localized at the head of the 40S subunit and extends into its functional center. During induced erythroid maturation of K562 cells, decreasing arginine dimethylation of HNRNPK is linked to a reduced interaction with RPS19 in vitro and in vivo. Dimethylation of residues R256, R258 and R268 in HNRNPK affects its interaction with RPS19. In noninduced K562 cells, RPS19 depletion results in the induction of ALOX15 synthesis and mitochondria degradation. Interestingly, residue W52 in RPS19, which is frequently mutated in Diamond-Blackfan Anemia (DBA), participates in specific HNRNPK binding and is an integral part of a putative aromatic cage

    Rules of engagement promote polarity in RNA trafficking

    Get PDF
    Many cell biological pathways exhibit overall polarity (net movement of molecules in one direction) even though individual molecular interactions in the pathway are freely reversible. The A2 RNA trafficking pathway exhibits polarity in moving specific RNA molecules from the nucleus to localization sites in the myelin compartment of oligodendrocytes or dendritic spines in neurons. The A2 pathway is mediated by a ubiquitously expressed trans-acting trafficking factor (hnRNP A2) that interacts with a specific 11 nucleotide cis-acting trafficking sequence termed the A2 response element (A2RE) found in several localized RNAs. Five different molecular partners for hnRNP A2 have been identified in the A2 pathway: hnRNP A2 itself, transportin, A2RE RNA, TOG (tumor overexpressed gene) and hnRNP E1, each playing a key role in one particular step of the A2 pathway. Sequential interactions of hnRNP A2 with different molecular partners at each step mediate directed movement of trafficking intermediates along the pathway. Specific "rules of engagement" (both and, either or, only if) govern sequential interactions of hnRNP A2 with each of its molecular partners. Rules of engagement are defined experimentally using three component binding assays to measure differential binding of hnRNP A2 to one partner in the presence of each of the other partners in the pathway. Here we describe rules of engagement for hnRNP A2 binding to each of its molecular partners and discuss how these rules of engagement promote polarity in the A2 RNA trafficking pathway. For molecules with multiple binding partners, specific rules of engagement govern different molecular interactions. Rules of engagement are ultimately determined by structural relationships between binding sites on individual molecules. In the A2 RNA trafficking pathway rules of engagement governing interactions of hnRNP A2 with different binding partners provide the basis for polarity of movement of intermediates along the pathway

    Contribution of the first K-homology domain of poly(C)-binding protein 1 to its affinity and specificity for C-rich oligonucleotides

    Get PDF
    Poly-C-binding proteins are triple KH (hnRNP K homology) domain proteins with specificity for single stranded C-rich RNA and DNA. They play diverse roles in the regulation of protein expression at both transcriptional and translational levels. Here, we analyse the contributions of individual Ī±CP1 KH domains to binding C-rich oligonucleotides using biophysical and structural methods. Using surface plasmon resonance (SPR), we demonstrate that KH1 makes the most stable interactions with both RNA and DNA, KH3 binds with intermediate affinity and KH2 only interacts detectibly with DNA. The crystal structure of KH1 bound to a 5ā€²-CCCTCCCT-3ā€² DNA sequence shows a 2:1 protein:DNA stoichiometry and demonstrates a molecular arrangement of KH domains bound to immediately adjacent oligonucleotide target sites. SPR experiments, with a series of poly-C-sequences reveals that cytosine is preferred at all four positions in the oligonucleotide binding cleft and that a C-tetrad binds KH1 with 10 times higher affinity than a C-triplet. The basis for this high affinity interaction is finally detailed with the structure determination of a KH1.W.C54S mutant bound to 5ā€²-ACCCCA-3ā€² DNA sequence. Together, these data establish the lead role of KH1 in oligonucleotide binding by Ī±CP1 and reveal the molecular basis of its specificity for a C-rich tetrad

    Heterogeneous Nuclear Ribonucleoprotein K Interacts with Abi-1 at Postsynaptic Sites and Modulates Dendritic Spine Morphology

    Get PDF
    BACKGROUND: Abelson-interacting protein 1 (Abi-1) plays an important role for dendritic branching and synapse formation in the central nervous system. It is localized at the postsynaptic density (PSD) and rapidly translocates to the nucleus upon synaptic stimulation. At PSDs Abi-1 is in a complex with several other proteins including WASP/WAVE or cortactin thereby regulating the actin cytoskeleton via the Arp 2/3 complex. PRINCIPAL FINDINGS: We identified heterogeneous nuclear ribonucleoprotein K (hnRNPK), a 65 kDa ssDNA/RNA-binding-protein that is involved in multiple intracellular signaling cascades, as a binding partner of Abi-1 at postsynaptic sites. The interaction with the Abi-1 SH3 domain is mediated by the hnRNPK-interaction (KI) domain. We further show that during brain development, hnRNPK expression becomes more and more restricted to granule cells of the cerebellum and hippocampal neurons where it localizes in the cell nucleus as well as in the spine/dendritic compartment. The downregulation of hnRNPK in cultured hippocampal neurons by RNAi results in an enlarged dendritic tree and a significant increase in filopodia formation. This is accompanied by a decrease in the number of mature synapses. Both effects therefore mimic the neuronal morphology after downregulation of Abi-1 mRNA in neurons. CONCLUSIONS: Our findings demonstrate a novel interplay between hnRNPK and Abi-1 in the nucleus and at synaptic sites and show obvious similarities regarding both protein knockdown phenotypes. This indicates that hnRNPK and Abi-1 act synergistic in a multiprotein complex that regulates the crucial balance between filopodia formation and synaptic maturation in neurons

    Involvement of KSRP in the post-transcriptional regulation of human iNOS expressionā€“complex interplay of KSRP with TTP and HuR

    Get PDF
    We purified the KH-type splicing regulatory protein (KSRP) as a protein interacting with the 3ā€²-untranslated region (3ā€²-UTR) of the human inducible nitric oxide (iNOS) mRNA. Immunodepletion of KSRP enhanced iNOS 3ā€²-UTR RNA stability in in vitro-degradation assays. In DLD-1 cells overexpressing KSRP cytokine-induced iNOS expression was markedly reduced. In accordance, downregulation of KSRP expression increases iNOS expression by stabilizing iNOS mRNA. Co-immunoprecipitations showed interaction of KSRP with the exosome and tristetraprolin (TTP). To analyze the role of KSRP binding to the 3ā€²-UTR we studied iNOS expression in DLD-1 cells overexpressing a non-binding mutant of KSRP. In these cells, iNOS expression was increased. Mapping of the binding site revealed KSRP interacting with the most 3ā€²-located AU-rich element (ARE) of the human iNOS mRNA. This sequence is also the target for HuR, an iNOS mRNA stabilizing protein. We were able to demonstrate that KSRP and HuR compete for this binding site, and that intracellular binding to the iNOS mRNA was reduced for KSRP and enhanced for HuR after cytokine treatment. Finally, a complex interplay of KSRP with TTP and HuR seems to be essential for iNOS mRNA stabilization after cytokine stimulation

    Heterogeneous nuclear ribonucleoprotein K is over expressed, aberrantly localised and is associated with poor prognosis in colorectal cancer

    Get PDF
    Heterogeneous ribonucleoprotein K (hnRNP K) is a member of the hnRNP family which has several different cellular roles including transcription, mRNA shuttling, RNA editing and translation. Several reports implicate hnRNP K having a role in tumorigenesis, for instance hnRNP K increases transcription of the oncogene c-myc and hnRNP K expression is regulated by the p53/MDM 2 pathway. In this study comparing normal colon to colorectal cancer by proteomics, hnRNP K was identified as being overexpressed in this type of cancer. Immunohistochemistry with a monoclonal antibody to hnRNP K (which we developed) on colorectal cancer tissue microarray, confirmed that hnRNP K was overexpressed in colorectal cancer (P<0.001) and also showed that hnRNP K had an aberrant subcellular localisation in cancer cells. In normal colon hnRNP K was exclusively nuclear whereas in colorectal cancer the protein localised both in the cytoplasm and the nucleus. There were significant increases in both nuclear (P=0.007) and cytoplasmic (P=0.001) expression of hnRNP K in Dukes C tumours compared with early stage tumours. In Dukes C patient's good survival was associated with increased hnRNP K nuclear expression (P=0.0093). To elaborate on the recent observation that hnRNP K is regulated by p53, the expression profiles of these two proteins were also analysed. There was no correlation between hnRNP K and p53 expression, however, patients who presented tumours that were positive for hnRNP K and p53 had a poorer survival outcome (P=0.045)

    Proteomic analysis of differential proteins in pancreatic carcinomas: Effects of MBD1 knock-down by stable RNA interference

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Methyl-CpG binding domain protein 1 (MBD1), a suppressor of gene transcription, may be involved in inactivation of tumor suppressor genes during tumorigenesis. Over-expression of MBD1 has been reported in human pancreatic carcinomas.</p> <p>Methods</p> <p>In this study, we established a MBD1-knock-down pancreatic cancer cell line (BxPC-3) using stable RNA interference, to compare the proteomic changes between control and MBD1-knock-down cells using two-dimensional gel electrophoresis and mass spectrometry.</p> <p>Results</p> <p>We identified five proteins that were up-regulated and nine proteins that were down-regulated. Most of the identified proteins are involved in tumorigenesis, some are prognostic biomarkers for human malignant tumors.</p> <p>Conclusion</p> <p>Our data suggest that these differential proteins may be associated with the function of MBD1, and provide some insight into the functional mechanism of MBD1 in the development of pancreatic cancer.</p

    Interactions Between Estrogen- and Ah-Receptor Signalling Pathways in Primary Culture of Salmon Hepatocytes Exposed to Nonylphenol and 3,3',4,4'-Tetrachlorobiphenyl (Congener 77)

    Get PDF
    BACKGROUND: The estrogenic and xenobiotic biotransformation gene expressions are receptor-mediated processes that are ligand structure-dependent interactions with estrogen-receptor (ER) and aryl hydrocarbon receptor (AhR), probably involving all subtypes and other co-factors. The anti-estrogenic activities of AhR agonists have been reported. In teleost fish, exposure to AhR agonists has been associated with reduced Vtg synthesis or impaired gonadal development in both in vivo- and in vitro studies. Inhibitory AhR and ER cross-talk have also been demonstrated in breast cancer cells, rodent uterus and mammary tumors. Previous studies have shown that AhR-agonists potentiate xenoestrogen-induced responses in fish in vivo system. Recently, several studies have shown that AhR-agonists directly activate ERĪ± and induce estrogenic responses in mammalian in vitro systems. In this study, two separate experiments were performed to study the molecular interactions between ER and AhR signalling pathways using different concentration of PCB-77 (an AhR-agonist) and time factor, respectively. Firstly, primary Atlantic salmon hepatocytes were exposed to nonylphenol (NP: 5 Ī¼M ā€“ an ER agonist) singly or in combination with 0.001, 0.01 and 1 Ī¼M PCB-77 and sampled at 48 h post-exposure. Secondly, hepatocytes were exposed to NP (5 Ī¼M) or PCB-77 (1 Ī¼M) singly or in combination for 12, 24, 48 and 72 h. Samples were analyzed using a validated real-time PCR for genes in the ER pathway or known to be NP-responsive and AhR pathway or known to be PCB-77 responsive. RESULTS: Our data showed a reciprocal inhibitory interaction between NP and PCB-77. PCB-77 produced anti-NP-mediated effect by decreasing the mRNA expression of ER-responsive genes. NP produced anti-AhR mediated effect or as inhibitor of AhRĪ±, AhRR, ARNT, CYP1A1 and UDPGT expression. A novel aspect of the present study is that low (0.001 Ī¼M) and medium (0.01 Ī¼M) PCB-77 concentrations increased ERĪ± mRNA expression above control and NP exposed levels, and at 12 h post-exposure, PCB-77 exposure alone produced significant elevation of ERĪ±, ERĪ² and Zr-protein expressions above control levels. CONCLUSION: The findings in the present study demonstrate a complex mode of ER-AhR interactions that were dependent on time of exposure and concentration of individual chemicals (NP and PCB-77). This complex mode of interaction is further supported by the effect of PCB-77 on ERĪ± and ERĪ² (shown as increase in transcription) with no concurrent activation of Vtg (but Zr-protein) response. These complex interactions between two different classes of ligand-activated receptors provide novel mechanistic insights on signalling pathways. Therefore, the degree of simultaneous interactions between the ER and AhR gene transcripts demonstrated in this study supports the concept of cross-talk between these signalling pathways
    • ā€¦
    corecore