14 research outputs found
Diverse diazotrophs are present on sinking particles in the North Pacific Subtropical Gyre.
Sinking particles transport carbon and nutrients from the surface ocean into the deep sea and are considered hot spots for bacterial diversity and activity. In the oligotrophic oceans, nitrogen (N2)-fixing organisms (diazotrophs) are an important source of new N but the extent to which these organisms are present and exported on sinking particles is not well known. Sinking particles were collected every 6 h over a 2-day period using net traps deployed at 150 m in the North Pacific Subtropical Gyre. The bacterial community and composition of diazotrophs associated with individual and bulk sinking particles was assessed using 16S rRNA and nifH gene amplicon sequencing. The bacterial community composition in bulk particles remained remarkably consistent throughout time and space while large variations of individually picked particles were observed. This difference suggests that unique biogeochemical conditions within individual particles may offer distinct ecological niches for specialized bacterial taxa. Compared to surrounding seawater, particle samples were enriched in different size classes of globally significant N2-fixing cyanobacteria including Trichodesmium, symbionts of diatoms, and the unicellular cyanobacteria Crocosphaera and UCYN-A. The particles also contained nifH gene sequences of diverse non-cyanobacterial diazotrophs suggesting that particles could be loci for N2 fixation by heterotrophic bacteria. The results demonstrate that diverse diazotrophs were present on particles and that new N may thereby be directly exported from surface waters on sinking particles
Incidence of lesions on Fungiidae corals in the eastern Red Sea is related to water temperature and coastal pollution
Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Marine Environmental Research 98 (2014): 29-38, doi:10.1016/j.marenvres.2014.04.002.As sea surface temperatures rise and the global human population increases, large-scale
field observations of marine organism health and water quality are increasingly
necessary. We investigated the health of corals from the family Fungiidae using visual
observations in relation to water quality and microbial biogeochemistry parameters along
1300 km of the Red Sea coast of Saudi Arabia. At large scales, incidence of lesions
caused by unidentified etiology showed consistent signs, increasing significantly from the
northern to southern coast and positively correlated to annual mean seawater
temperatures. Lesion abundance also increased to a maximum of 96% near the populous
city of Jeddah. The presence of lesioned corals in the region surrounding Jeddah was strongly correlated with elevated concentrations of ammonium and changes in microbial
communities that are linked to decreased water quality. This study suggests that both high
seawater temperatures and nutrient pollution may play an indirect role in the formation of
lesions on corals.This research was supported by Award No. USA 00002 to K. Hughen by King Abdullah
University of Science and Technology (KAUST) and a WHOI Ocean Life Institute
postdoctoral scholar fellowship to A. Apprill
Impact of prawn farming effluent on coral reef water nutrients and microorganisms
© The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Aquaculture Environment Interactions 9 (2017): 331-346, doi:10.3354/aei00238.Tropical coral reefs are characterized by low-nutrient waters that support oligotrophic picoplankton over a productive benthic ecosystem. Nutrient-rich effluent released from aquaculture facilities into coral reef environments may potentially upset the balance of these ecosystems by altering picoplankton dynamics. In this study, we examined how effluent from a prawn (Litopenaeus vannamei) farming facility in Al Lith, Saudi Arabia, impacted the inorganic nutrients and prokaryotic picoplankton community in the waters overlying coral reefs in the Red Sea. Across 24 sites, ranging 0-21 km from the effluent point source, we measured nutrient concentrations, quantified microbial cell abundances, and sequenced bacterial and archaeal small subunit ribosomal RNA (SSU rRNA) genes to examine picoplankton phylogenetic diversity and community composition. Our results demonstrated that sites nearest to the outfall had increased concentrations of phosphate and ammonium and elevated abundances of non-pigmented picoplankton (generally heterotrophic bacteria). Shifts in the composition of the picoplankton community were observed with increasing distance from the effluent canal outfall. Waters within 500 m of the outfall harbored the most distinct picoplanktonic community and contained putative pathogens within the genus Francisella and order Rickettsiales. While our study suggests that at the time of sampling, the Al Lith aquaculture facility exhibited relatively minor influences on inorganic nutrients and microbial communities, studying the longer-term impacts of the aquaculture effluent on the organisms within the reef will be necessary in order to understand the full extent of the facility’s impact on the reef ecosystem.This
research was supported by a Woods Hole Oceanographic
Institution (WHOI) Ocean Life Institute postdoctoral scholar
fellowship to A.A., the Semester at WHOI Program supporting
C.B., and Award No. USA 00002 to K.H. made by King
Abdullah University of Science and Technology (KAUST)
Dynamics of extracellular superoxide production by Trichodesmium colonies from the Sargasso Sea
Author Posting. © Association for the Sciences of Limnology and Oceanography, 2016. This article is posted here by permission of Association for the Sciences of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography 61 (2016): 1188–1200, doi:10.1002/lno.10266.Reactive oxygen species (ROS) are key players in the health and biogeochemistry of the ocean and its inhabitants. The vital contribution of microorganisms to marine ROS levels, particularly superoxide, has only recently come to light, and thus the specific biological sources and pathways involved in ROS production are largely unknown. To better understand the biogenic controls on ROS levels in tropical oligotrophic systems, we determined rates of superoxide production under various conditions by natural populations of the nitrogen-fixing diazotroph Trichodesmium obtained from various surface waters in the Sargasso Sea. Trichodesmium colonies collected from eight different stations all produced extracellular superoxide at high rates in both the dark and light. Colony density and light had a variable impact on extracellular superoxide production depending on the morphology of the Trichodesmium colonies. Raft morphotypes showed a rapid increase in superoxide production in response to even low levels of light, which was not observed for puff colonies. In contrast, superoxide production rates per colony decreased with increasing colony density for puff morphotypes but not for rafts. These findings point to Trichodesmium as a likely key source of ROS to the surface oligotrophic ocean. The physiological and/or ecological factors underpinning morphology-dependent controls on superoxide production need to be unveiled to better understand and predict superoxide production by Trichodesmium and ROS dynamics within marine systems.Major support for this work was provided by NSF OCE-
1246174 to CMH, NSF OCE-1332912 to STD and NSF OCE-13329898
to BASVM
The multiple fates of sinking particles in the North Atlantic Ocean
Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 29 (2015): 1471–1494, doi:10.1002/2014GB005037.The direct respiration of sinking organic matter by attached bacteria is often invoked as the dominant sink for settling particles in the mesopelagic ocean. However, other processes, such as enzymatic solubilization and mechanical disaggregation, also contribute to particle flux attenuation by transferring organic matter to the water column. Here we use observations from the North Atlantic Ocean, coupled to sensitivity analyses of a simple model, to assess the relative importance of particle-attached microbial respiration compared to the other processes that can degrade sinking particles. The observed carbon fluxes, bacterial production rates, and respiration by water column and particle-attached microbial communities each spanned more than an order of magnitude. Rates of substrate-specific respiration on sinking particle material ranged from 0.007 ± 0.003 to 0.173 ± 0.105 day−1. A comparison of these substrate-specific respiration rates with model results suggested sinking particle material was transferred to the water column by various biological and mechanical processes nearly 3.5 times as fast as it was directly respired. This finding, coupled with strong metabolic demand imposed by measurements of water column respiration (729.3 ± 266.0 mg C m−2 d−1, on average, over the 50 to 150 m depth interval), suggested a large fraction of the organic matter evolved from sinking particles ultimately met its fate through subsequent remineralization in the water column. At three sites, we also measured very low bacterial growth efficiencies and large discrepancies between depth-integrated mesopelagic respiration and carbon inputs.U.S. Environmental Protection Agency (EPA) STAR Grant Number: FP-91744301-0; National Science Foundation Grant Numbers OCE-1061883, EF-0424599, OCE-1155438, OCE-1059884, OCE-1031143; Gordon and Betty Moore Foundation Grant Numbers: 3301, 3789; Gordon and Betty Moore Foundation; Woods Hole Oceanographic Institution2016-03-2
An autonomous, in situ light-dark bottle device for determining community respiration and net community production
Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography-Methods 16 (2018): 323-338, doi:10.1002/lom3.10247.We describe a new, autonomous, incubation-based instrument that is deployed in situ to
determine rates of gross community respiration and net community production in marine and aquatic
ecosystems. During deployments at a coastal pier and in the open ocean, the PHORCYS
(PHOtosynthesis and Respiration Comparison-Yielding System) captured dissolved oxygen fluxes
over hourly timescales that were missed by traditional methods. The instrument uses fluorescence-quenching optodes fitted into separate light and dark chambers; these are opened and closed with
piston-like actuators, allowing the instrument to make multiple, independent rate estimates in the
course of each deployment. Consistent with other studies in which methods purporting to measure
the same metabolic processes have yielded divergent results, respiration rate estimates from the
PHORCYS were systematically higher than those calculated for the same waters using a traditional
two-point Winkler titration technique. However, PHORCYS estimates of gross respiration agreed
generally with separate incubations in bottles fitted with optode sensor spots. An Appendix describes
a new method for estimating uncertainties in metabolic rates calculated from continuous dissolved
oxygen data. Multiple successful, unattended deployments of the PHORCYS represent a small step
toward fully autonomous observations of community metabolism. Yet the persistence of unexplained
disagreements among aquatic metabolic rate estimates — such as those we observed between rates
calculated with the PHORCYS and two existing, widely-accepted bottle-based methods — suggests
that a new community intercalibration effort is warranted to address lingering sources of error in
these critical measurements.This research was supported by the U.S.
National Science Foundation (awards OCE-1155438 to B.A.S.V.M., J.R.V., and R.G.K., and OCE-
1059884 to B.A.S.V.M.), the Woods Hole Oceanographic Institution through a Cecil and Ida Green
Foundation Innovative Technology Award and an Interdisciplinary Science Award, and a U.S.
Environmental Protection Agency (EPA) STAR Graduate Fellowship to J.R.C. under Fellowship
Assistance Agreement no. FP-91744301-0
Daily changes in phytoplankton lipidomes reveal mechanisms of energy storage in the open ocean
© The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nature Communications 9 (2018): 5179, doi:10.1038/s41467-018-07346-z.Sunlight is the dominant control on phytoplankton biosynthetic activity, and darkness deprives them of their primary external energy source. Changes in the biochemical composition of phytoplankton communities over diel light cycles and attendant consequences for carbon and energy flux in environments remain poorly elucidated. Here we use lipidomic data from the North Pacific subtropical gyre to show that biosynthesis of energy-rich triacylglycerols (TAGs) by eukaryotic nanophytoplankton during the day and their subsequent consumption at night drives a large and previously uncharacterized daily carbon cycle. Diel oscillations in TAG concentration comprise 23 ± 11% of primary production by eukaryotic nanophytoplankton representing a global flux of about 2.4 Pg C yr−1. Metatranscriptomic analyses of genes required for TAG biosynthesis indicate that haptophytes and dinoflagellates are active members in TAG production. Estimates suggest that these organisms could contain as much as 40% more calories at sunset than at sunrise due to TAG production.This work was supported by a grant from the Simons Foundation, and is a contribution of the Simons Collaboration on Ocean Processes and Ecology (SCOPE award # 329108, B.A.S.V.M.). K.W.B. was further supported by the Postdoctoral Scholarship Program at Woods Hole Oceanographic Institution & U.S. Geological Survey
Quantitative exploration of the fundamental microbial processes that contribute to the accumulation of natural biofilms on ships’ hulls
The accumulation of microbial biofilms on ships' hulls negatively affects ships' performance and efficiency while also moderating the establishment of even more detrimental hard-fouling communities. However, there is little quantitative information on how the accumulation rate of microbial biofilms is impacted by the balance of the rates of cell settlement, in situ production (ie growth), dispersal to surrounding waters and mortality induced by grazers. These rates were quantified on test panels coated with copper-based antifouling or polymer-based fouling-release coatings by using phospholipids as molecular proxies for microbial biomass. The results confirmed the accepted modes of efficacy of these two types of coatings. In a more extensive set of experiments with only the fouling-release coatings, it was found that seasonally averaged cellular production rates were 1.5 ± 0.5 times greater than settlement and the dispersal rates were 2.7 ± 0.8 greater than grazing. The results of this study quantitatively describe the dynamic balance of processes leading to microbial biofilm accumulation on coatings designed for ships' hulls
Recommended from our members
Viral Glycosphingolipids Induce Lytic Infection and Cell Death in Marine Phytoplankton
Global ocean lipidomes show a universal relationship between temperature and lipid unsaturation
Global-scale surveys of plankton communities using "omics" techniques have revolutionized our understanding of the ocean. Lipidomics has demonstrated the potential to add further essential insights on ocean ecosystem function but has yet to be applied on a global scale. We analyzed 930 lipid samples across the global ocean using a uniform high-resolution accurate-mass mass spectrometry analytical workflow, revealing previously unknown characteristics of ocean planktonic lipidomes. Focusing on 10 molecularly diverse glycerolipid classes, we identified 1151 distinct lipid species, finding that fatty acid unsaturation (i.e., number of carbon-carbon double bonds) is fundamentally constrained by temperature. We predict substantial declines in the essential fatty acid eicosapentaenoic acid over the next century, which are likely to have serious deleterious effects on economically critical fisheries