6 research outputs found

    Loss of the SPHF homologue Slr1768 leads to a catastrophic failure in the maintenance of thylakoid membranes in synechocystis sp. PCC 6803

    Get PDF
    Background: In cyanobacteria the photosystems are localised to, and maintained in, specialist membranes called the thylakoids. The mechanism driving the biogenesis of the thylakoid membranes is still an open question, with only two potential biogenesis factors, Vipp1 and Alb3 currently identified. Methodology/Principal Findings: We generated a slr1768 knockout using the pGEM T-easy vector and REDIRECT. By comparing growth and pigment content (chlorophyll a fluoresence) of the Delta slr1768 mutant with the wild-type, we found that Dslr1768 has a conditional phenotype; specifically under high light conditions (130 mu mol m(-2) s(-1)) thylakoid biogenesis is disrupted leading to cell death on a scale of days. The thylakoids show considerable disruption, with loss of both structure and density, while chlorophyll a density decreases with the loss of thylakoids, although photosynthetic efficiency is unaffected. Under low light (30 mu mol m(-2) s(-1)) the phenotype is significantly reduced, with a growth rate similar to the wildtype and only a low frequency of cells with evident thylakoid disruption. Conclusions/Significance: This is the first example of a gene that affects the maintenance of the thylakoid membranes specifically under high light, and which displays a phenotype dependent on light intensity. Our results demonstrate that Slr1768 has a leading role in acclimatisation, linking light damage with maintenance of the thylakoids

    Red Light and Calmodulin Regulate the Expression of the psbA Binding Protein Genes in Chlamydomonas reinhardtii

    No full text
    In the unicellular green alga Chlamydomonas reinhardtii, translation of the chloroplast-encoded psbA mRNA is regulated by the light-dependent binding of a nuclear-encoded protein complex (RB38, RB47, RB55 and RB60) to the 5′-untranslated region of the RNA. Despite the absence of any report identifying a red light photoreceptor within this alga, we show that the expression of the rb38, rb47 and rb60 genes, as well as the nuclear-encoded psbO gene that directs the synthesis of OEE1 (oxygen evolving enhancer 1), is differentially regulated by red light. Further elucidation of the signal transduction pathway shows that calmodulin is an important messenger in the signaling cascade that leads to the expression of rb38, rb60 and psbO, and that a chloroplast signal affects rb47 at the translational level. While there may be several factors involved in the cascade of events from the perception of red light to the expression of the rb and psbO genes, our data suggest the involvement of a red light photoreceptor. Future studies will elucidate this receptor and the additional components of this red light signaling expression pathway in C. reinhardtii

    The Chloroplast Genome and Nucleo-Cytosolic Crosstalk

    No full text

    Chloroplast Gene Expression—RNA Synthesis and Processing

    No full text
    corecore