56 research outputs found

    Gas-phase oxidative dehydrogenation of long chain alkenols for the production of key fragrance ingredients: from Rosalva isomers to Costenal analogues

    Get PDF
    The continuous-flow, gas-phase oxidative dehydrogenation (ODH) of an actual mixture of decen-1-ol isomers ("Isorosalva" alcohol) towards the corresponding mixture of aldehydes ("Costenal" analogues, valuable ingredients in perfumes formulation) is herein reported for the first time over noble metal-free catalysts. In particular, the optimisation of the reaction conditions over a copper ferrite (Cu/Fe/O), as well as dedicated characterizations and comparisons between the fresh, the post-reaction (reduced) and regenerated (re-oxidised) catalytic material, allowed us to underline the key role of well dispersed copper oxide over a Fe-enriched spinel in promoting the selective ODH of Isorosalva alcohol. The superior catalytic activity and selectivity of CuO/gamma-Fe2O3 synthesized ad hoc were attributed to the very high dispersion of Cu over the support as well as to a cooperative effect between Cu and Fe species in promoting the redox cycle

    Efficient low-loaded ternary Pd-In2O3-Al2O3 catalysts for methanol production

    Get PDF
    Pd-In2O3 catalysts are among the most promising alternatives to Cu-ZnO-Al2O3 for synthesis of CH3OH from CO2. However, the intrinsic activity and stability of In2O3 per unit mass should be increased to reduce the content of this scarcely available element and to enhance the catalyst lifetime. Herein, we propose and demonstrate a strategy for obtaining highly dispersed Pd and In2O3 nanoparticles onto an Al2O3 matrix by a one-step coprecipitation followed by calcination and activation. The activity of this catalyst is comparable with that of a Pd-In2O3 catalyst (0.52 vs 0.55 gMeOH h−1 gcat-1 at 300 °C, 30 bar, 40,800 mL h−1 gcat-1) but the In2O3 loading decreases from 98 to 12 wt% while improving the long-term stability by threefold at 30 bar. In the new Pd-In2O3-Al2O3 system, the intrinsic activity of In2O3 is highly increased both in terms of STY normalized to In specific surface area and In2O3 mass (4.32 vs 0.56 g gMeOH h−1 gIn2O3-1 of a Pd- In2O3 catalyst operating at 300 °C, 30 bar, 40,800 mL h−1 gcat-1).The combination of ex situ and in situ catalyst characterizations during reduction provides insights into the interaction between Pd and In and with the support. The enhanced activity is likely related to the close proximity of Pd and In2O3, wherein the H2 splitting activity of Pd promotes, in combination with CO2 activation over highly dispersed In2O3 particles, facile formation of CH3OH

    Understanding structure-activity relationships in highly active La promoted Ni catalysts for COâ‚‚ methanation

    Get PDF
    Ni-based catalysts are selective in the hydrogenation of CO_{2} to CH_{4} but their activity and stability need improvement. Herein, we propose a hydrotalcite-derived high loaded Ni-Al_{2}O_{3} catalyst promoted by La. The effect of La on the catalyst properties is investigated and compared with that of Y and Ce. The NiO_{x} rystallite size and basic properties (rather than the nickel reducibility) as well as the catalytic activity depend on the rare-earth element. The La-catalyst achieves a more relevant activity enhancement at low temperature and high space velocity (480 L g^{-1} h^{-1}, CO_{2}/H_{2}/N_{2} = 1/4/1 v/v), high CH_{4} productivity (101 L_{CH4} gNi^{-1} h^{-1}) and stability, even under undiluted feeds. In situ DRIFTS and the characterization of spent catalysts confirm that this enhanced performance is related to the combination of dissociative and associative CO_{2} activation on more reduced, highly dispersed and stable Ni nanoparticles and basic sites in the La_{2}O_{3}-Al_{2}O_{3} matrix, respectively

    Mucoadhesive multiparticulate patch for the intrabuccal controlled delivery of lidocaine

    No full text
    The aim of the present study was to prepare and evaluate patches for the controlled release of lidocaine in the oral cavity. Mucoadhesive buccal patches, containing 8 mg/cm2 lidocaine base, were formulated and developed by solvent casting method technique, using a number of different bio-adhesive and film-forming semi-synthetic and synthetic polymers (Carbopol, Poloxamer, different type Methocel) and plasticizers (PEG 400, triethyl citrate); the patches were evaluated for bioadhesion, in vitro drug release and permeation using a modified Franz diffusion cell. A lidocaine/Compritol solid dispersion in the form of microspheres, embedded inside the patch, alone or together with free lidocaine, was also examined to prolong the drug release. The effects of the composition were evaluated considering a number of technological parameters and the release of the drug. All the formulations tested offer a variety of drug release mechanisms, obtaining a quick or delayed or prolonged anesthetic local activity with simple changes of the formulation parameters

    ATR/Raman and fractal characterization of HPBCD/progesterone complex solid particles

    No full text
    PURPOSE: Characterization of hydroxypropyl-beta-cyclodextrin/progesterone (HPBCD/P) complex solid particles obtained from an aqueous solution, by three different technological processes, with the aim of preparing ready-to-dissolve powders for injectable as well as solid oral formulations in progestinic therapy. METHODS: HPBCD/P complex in the 2:1 molar ratio was prepared in aqueous solution and obtained as dry solid particles by freeze-drying, by spray-drying and by fluid-bed evaporation of the solvent. The particles were characterized by mu-FT-IR, mu-Raman and X-ray spectroscopy, by thermal analysis (differential scanning calorimetry-DSC and thermogravimetry-TGA), by Karl Fischer (KF) titration, by image and fractal analysis and by BET specific surface area analysis. The structure of the complex was also defined by comparison of FT-IR and Raman spectra of progesterone with those of pregnenolone and testosterone, structurally related. Dissolution tests were also performed. RESULTS: Powders of the complex obtained by the three different methods are different in size and shape. Particles obtained by freeze-drying are flat and angular, irregularly shaped without any relation to known geometrical solid figures. Particles obtained by spray-drying are spherically shaped and display a very small size (5-10 microm), with evident deformations and depression of the external surface, due to the rapid evaporation of the solvent. Particles obtained by fluid bed technique have intermediate sizes, display a tri-dimensional structure and irregular surface, with small and rounded protuberances. Fractal dimension of the particle contour was found close to one unit for the microspheres obtained by spray-drying. FT-IR and Raman spectra confirm the occurrence of the complexation by the shift of representative bands of the two carbonyl groups in positions 3 and 20 of the complexed progesterone. X-ray diffractograms indicate the amorphous nature of all the types of particles, also suggested by the absence of any melting peak of the drug in DSC thermograms. The samples contain different amounts of humidity: particles obtained by fluid-bed method demonstrated non-porous in BET analysis. Dissolution of different types of particles is complete after 3 min and only negligible differences could be appreciated among the three powders. CONCLUSIONS: - mu-FT-IR, mu-Raman and X-ray spectroscopy, and the dissolution test did not reveal defined differences among the three different types of particles, confirming occurrence of the complex in the solid state. The spherical shape, the very small size and the low value of the contour fractal dimension allows better technological performance of the particles obtained by spray-drying: this drying process appears the most promising one to prepare dry particles of the HPBCD/P complex, in view of its formulation in the fast preparation of extemporaneous injectable solutions and solid oral formulations intended for sublingual delivery
    • …
    corecore