34 research outputs found

    Ser649 and Ser650 Are the Major Determinants of Protein Kinase A-Mediated Activation of Human Hormone-Sensitive Lipase against Lipid Substrates

    Get PDF
    BACKGROUND: Hormone-sensitive lipase (HSL) is a key enzyme in the mobilization of fatty acids from stored triacylglycerols. Its activity is regulated by reversible protein phosphorylation. In rat HSL Ser563, Ser659 and Ser660 have been shown to be phosphorylated by protein kinase A (PKA) in vitro as well as in vivo. METHODOLOGY/PRINCIPAL FINDINGS: In this study we employed site-directed mutagenesis, in vitro phosphorylation and mass spectrometry to show that in vitro phosphorylation of human HSL by PKA occurs primarily on Ser649 and Ser650 (Ser659 and Ser660 in rat HSL). The wild type enzyme and four mutants were expressed in C-terminally His-tagged form in Sf9 insect cells and purified to homogeneity. HSL variants in which Ser552 and/or Ser554 were mutated to Ala or Glu retained both lipolytic and non-lipolytic activity and were phosphorylated by PKA and activated to a similar extent as the wild type enzyme. (32)P-labeling studies revealed that the bulk of the phosphorylation was on the Ser649/Ser650 site, with only a minor phosphorylation of Ser552 and Ser554. MS/MS analysis demonstrated that the peptide containing Ser649 and Ser650 was primarily phosphorylated on Ser650. The mutant lacking all four serines had severely reduced lipolytic activity, but a lesser reduction in non-lipolytic activity, had S(0.5) values for p-nitrophenol butyrate and triolein comparable to those of wild type HSL and was not phosphorylated by PKA. PKA phosphorylation of the wild type enzyme resulted in an increase in both the maximum turnover and S(0,5) using the TO substrate. CONCLUSIONS: Our results demonstrate that PKA activates human HSL against lipid substrates in vitro primarily through phosphorylation of Ser649 and Ser650. In addition the results suggest that Ser649 and Ser650 are located in the vicinity of a lipid binding region and that PKA phosphorylation controls the accessibility of this region

    Type 2 Diabetes Susceptibility Gene Expression in Normal or Diabetic Sorted Human Alpha and Beta Cells: Correlations with Age or BMI of Islet Donors

    Get PDF
    BACKGROUND: Genome-wide association studies have identified susceptibility genes for development of type 2 diabetes. We aimed to examine whether a subset of these (comprising FTO, IDE, KCNJ11, PPARG and TCF7L2) were transcriptionally restricted to or enriched in human beta cells by sorting islet cells into alpha and beta - specific fractions. We also aimed to correlate expression of these transcripts in both alpha and beta cell types with phenotypic traits of the islet donors and to compare diabetic and non-diabetic cells. METHODOLOGY/PRINCIPAL FINDINGS: Islet cells were sorted using a previously published method and RNA was extracted, reverse transcribed and used as the template for quantitative PCR. Sorted cells were also analysed for insulin and glucagon immunostaining and insulin secretion from the beta cells as well as insulin, glucagon and GLP-1 content. All five genes were expressed in both alpha and beta cells, with significant enrichment of KCNJ11 in the beta cells and of TCF7L2 in the alpha cells. The ratio of KCNJ11 in beta to alpha cells was negatively correlated with BMI, while KCNJ11 expression in alpha cells was negatively correlated with age but not associated with BMI. Beta cell expression of glucagon, TCF7L2 and IDE was increased in cells from islets that had spent more time in culture prior to cell sorting. In beta cells, KCNJ11, FTO and insulin were positively correlated with each other. Diabetic alpha and beta cells had decreased expression of insulin, glucagon and FTO. CONCLUSIONS/SIGNIFICANCE: This study has identified novel patterns of expression of type 2 diabetes susceptibility genes within sorted islet cells and suggested interactions of gene expression with age or BMI of the islet donors. However, expression of these genes in islets is less associated with BMI than has been found for other tissues

    Tissue-specific alternative splicing of TCF7L2

    Get PDF
    Common variants in the transcription factor 7-like 2 (TCF7L2) gene have been identified as the strongest genetic risk factors for type 2 diabetes (T2D). However, the mechanisms by which these non-coding variants increase risk for T2D are not well-established. We used 13 expression assays to survey mRNA expression of multiple TCF7L2 splicing forms in up to 380 samples from eight types of human tissue (pancreas, pancreatic islets, colon, liver, monocytes, skeletal muscle, subcutaneous adipose tissue and lymphoblastoid cell lines) and observed a tissue-specific pattern of alternative splicing. We tested whether the expression of TCF7L2 splicing forms was associated with single nucleotide polymorphisms (SNPs), rs7903146 and rs12255372, located within introns 3 and 4 of the gene and most strongly associated with T2D. Expression of two splicing forms was lower in pancreatic islets with increasing counts of T2D-associated alleles of the SNPs: a ubiquitous splicing form (P = 0.018 for rs7903146 and P = 0.020 for rs12255372) and a splicing form found in pancreatic islets, pancreas and colon but not in other tissues tested here (P = 0.009 for rs12255372 and P = 0.053 for rs7903146). Expression of this form in glucose-stimulated pancreatic islets correlated with expression of proinsulin (r2 = 0.84–0.90, P < 0.00063). In summary, we identified a tissue-specific pattern of alternative splicing of TCF7L2. After adjustment for multiple tests, no association between expression of TCF7L2 in eight types of human tissue samples and T2D-associated genetic variants remained significant. Alternative splicing of TCF7L2 in pancreatic islets warrants future studies. GenBank Accession Numbers: FJ010164–FJ010174

    Disturbed cholesterol homeostasis in hormone-sensitive lipase-null mice.

    No full text
    Transcriptomics analysis revealed that genes involved in hepatic de novo cholesterol synthesis were downregulated in fed HSL-null mice that had been on a high-fat diet (HFD) for 6 mo. This finding prompted a further analysis of cholesterol metabolism in HSL-null mice, which was performed in fed and 16-h-fasted mice on a normal chow diet (ND) or HFD regimen. Plasma cholesterol was elevated in HSL-null mice, in all tested conditions, as a result of cholesterol enrichment of HDL and VLDL. Hepatic esterified cholesterol content and ATP-binding cassette transporter A1 (ABCA1) mRNA and protein levels were increased in HSL-null mice regardless of the dietary regimen. Unsaturated fatty acid composition of hepatic triglycerides was modified in fasted HSL-null mice on ND and HFD. The increased ABCA1 expression had no major effect on cholesterol efflux from HSL-null mouse hepatocytes. Taken together, the results of this study suggest that HSL plays a critical role in the hydrolysis of cytosolic cholesteryl esters and that increased levels of hepatic cholesteryl esters, due to lack of action of HSL in the liver, are the main mechanism underlying the imbalance in cholesterol metabolism in HSL-null mice

    Survival of rat pancreatic islets is partly controlled by a TCF7L2-p53-p53INP1 dependent pathway

    No full text
    Background and aims: TCF7L2 is both an activator and an inhibitor of transcription and the most highly associated type 2 diabetes gene known to date. It influences beta cell survival and function, i.e. incretin hormonal effects, insulin processing and secretion. However, its target genes in pancreatic islets are not fully described and the molecular mechanism whereby it propagates its effects on islet function is not known. The aim of this study is to identify the molecular mechanisms through which TCF7L2 influence beta cell survival and function. Materials and methods: Wister rat primary islets and INS-1 (832/13) cells were incubated with siRNA against Tcf7l2, both Tcf7l2 and TP53INP1 or both TCF7L2 and TP53 in 5.5 mM and 14.3 mM glucose. TCF7L2 activity, p53 activity and target gene expression (using qPCR) were measured after siRNA treatment. INS-1 cell apoptosis was measured by DNA degradation levels, caspase-3/7 levels and by using antibodies against Annexin V, and 7-AAD, visualized using confocal microscopy. Rat islet viability was estimated measuring metabolic rate. Rat islet apoptosis was estimated by measuring Caspase-3/7 level. Results: The type 2 diabetes associated genes TP53INP1, FTO, GIPR and ADAMTS9 were identified as TCF7L2 potential target gene using chromatin immunoprecipitation on microarrays. In INS-1 cells, siRNA mediated Tcf7l2 knock down (69.5 %) resulted in decreased TCF7L2 activity (91%) and differential expression of the target genes: Tp53 (14.5% increase), TP53INP1 (65.9% increase) and ADAMTS9 (82.8% decrease). TCF7L2 knockdown also lead to reduced cell viability (65%) and increased apoptosis (113%). The TCF7L2 induced cell death was replicated in rat primary islets. When restoring (decreasing) the Tp53inp1 expression level in TCF7L2 depleted islets, the decrease in cell viability and increase in apoptosis were prevented, suggesting that the Tcf7l2 effect is mediated via Tp53inp1. Furthermore, p53 depletion prohibited TCF7L2 down regulation induced cell death and elevation of Tp53inp1 expression in both INS-1 cells and rat primary islets. Conclusion: The type 2 diabetes associated genes TP53INP1 and ADAMTS9 are target genes of TCF7L2 in pancreatic islets. TCF7L2 induced apoptosis and decreased cell viability are mediated through activation of p53 and increased p53INP1 expression

    Disturbed cholesterol homeostasis in hormone-sensitive lipase-null mice.

    No full text
    Transcriptomics analysis revealed that genes involved in hepatic de novo cholesterol synthesis were downregulated in fed HSL-null mice that had been on a high-fat diet (HFD) for 6 mo. This finding prompted a further analysis of cholesterol metabolism in HSL-null mice, which was performed in fed and 16-h-fasted mice on a normal chow diet (ND) or HFD regimen. Plasma cholesterol was elevated in HSL-null mice, in all tested conditions, as a result of cholesterol enrichment of HDL and VLDL. Hepatic esterified cholesterol content and ATP-binding cassette transporter A1 (ABCA1) mRNA and protein levels were increased in HSL-null mice regardless of the dietary regimen. Unsaturated fatty acid composition of hepatic triglycerides was modified in fasted HSL-null mice on ND and HFD. The increased ABCA1 expression had no major effect on cholesterol efflux from HSL-null mouse hepatocytes. Taken together, the results of this study suggest that HSL plays a critical role in the hydrolysis of cytosolic cholesteryl esters and that increased levels of hepatic cholesteryl esters, due to lack of action of HSL in the liver, are the main mechanism underlying the imbalance in cholesterol metabolism in HSL-null mice

    Characterisation of recombinant isoforms of birch pollen allergen Bet v 1

    No full text
    Three isoforms of the major birch pollen allergen, Bet v, 1 from Betula verrucosa have been expressed as recombinant proteins in E. coli and purified. The immunochemical properties of recombinant isoforms (rBet v 1) differed on immunoblots when compared using Mabs and birch pollen allergic patients serum IgE. 2-D gel analysis showed that recombinant isoforms with different epitope structure can focus under the same protein spot after electrophoresis. The structure of conformational epitopes can be distorted by amino acid substitutions even when T-cell epitopes are not affected as judged by T-cell proliferation studies
    corecore