97 research outputs found

    On-farm food loss in northern and central California: Results of field survey measurementsAuthor links open overlay panel

    Get PDF
    Prevailing estimates of food loss at the farm level are sparse and often reliant upon grower surveys. A more comprehensive review of food loss at the farm level using field surveys is required to gain an adequate understanding of the depth of this issue. This paper details the results of 123 in-field surveys and 18 in-depth interviews of 20 different, hand-harvested field crops performed largely on midsize to large conventional farms in northern and central California. We also provide estimates of the percentage of fields that go unharvested, commonly known as walk-by fields. The results show that food loss is highly variable and largely dependent upon the crop, variety, market price, labor costs, grower practices, buyer specifications, and environmental conditions. On average, we found 11,299 kg/ha of food loss at the farm level, which equates to 31.3% of the marketed yield. When walk-by losses are included, this figure rises to 33.7%. Our paper also demonstrates that grower estimates are typically very unreliable for estimating on-farm food losses. Actual, measured edible food loss exceeded growers’ estimates by a median value of 157%. Strategies to utilize this lost produce could play a significant role in reducing the impact of agriculture on the environment and providing food for the rapidly growing population

    Restoring diversity after cattail expansion: disturbance, resilience, and seasonality in a tropical dry wetland

    Get PDF
    Abstract. As the human footprint expands, ecologists and resource managers are increasingly challenged to explain and manage abrupt ecosystem transformations (i.e., regime shifts). In this study, we investigated the role of a mechanical disturbance that has been used to restore and maintain local wetland diversity after a monotypic regime shift in northwestern Costa Rica [specifically, an abrupt landscape-scale cattail (Typha) expansion]. The study was conducted in Palo Verde Marsh (Palo Verde National Park; a RAMSAR Wetland of International Importance), a seasonally flooded freshwater wetland that has historically provided habitat for large populations of wading birds and waterfowl. A cattail (T. domingensis) expansion in the 1980s greatly altered the plant community and reduced avian habitat. Since then, Typha has been managed using a form of mechanical disturbance called fangueo (a Spanish word, pronounced ''fahn-gay-yo'' in English). We applied a Typha removal treatment at three levels (control, fangueo, and fangueo with fencing to exclude cattle grazing). Fangueo resulted in a large reduction in Typha dominance (i.e., decreased aboveground biomass, ramet density, and ramet height) and an increase in habitat heterogeneity. As in many ecosystems that have been defined by multiple and frequent disturbances, a large portion of the plant community regenerated after disturbance (via propagule banking) and fangueo resulted in a more diverse plant community that was strongly dictated by seasonal processes (i.e., distinct wet-and dry-season assemblages). Importantly, the mechanical disturbance had no apparent short-term impact on any of the soil properties we measured (including bulk density). Interestingly, low soil and foliar N:P values indicate that Palo Verde Marsh and other wetlands in the region may be nitrogen limited. Our results quantify how, in a cultural landscape where the historical disturbance regime has been altered and diversity has declined, a mechanical disturbance in combination with seasonal drought and flooding has been used to locally restrict a clonal monodominant plant expansion, create habitat heterogeneity, and maintain plant diversity

    Beyond just sea-level rise: considering macroclimatic drivers within coastal wetland vulnerability assessments to climate change

    Get PDF
    Due to their position at the land-sea interface, coastal wetlands are vulnerable to many aspects of climate change. However, climate change vulnerability assessments for coastal wetlands generally focus solely on sea-level rise without considering the effects of other facets of climate change. Across the globe and in all ecosystems, macroclimatic drivers (e.g., temperature and rainfall regimes) greatly influence ecosystem structure and function. Macroclimatic drivers have been the focus of climate change-related threat evaluations for terrestrial ecosystems, but largely ignored for coastal wetlands. In some coastal wetlands, changing macroclimatic conditions are expected to result in foundation plant species replacement, which would affect the supply of certain ecosystem goods and services and could affect ecosystem resilience. As examples, we highlight several ecological transition zones where small changes in macroclimatic conditions would result in comparatively large changes in coastal wetland ecosystem structure and function. Our intent in this communication is not to minimize the importance of sea-level rise. Rather, our overarching aim is to illustrate the need to also consider macroclimatic drivers within vulnerability assessments for coastal wetlands

    Sensitivity of mangrove range limits to climate variability

    Get PDF
    Aim: Correlative distribution models have been used to identify potential climatic controls of mangrove range limits, but there is still uncertainty about the relative importance of these factors across different regions. To provide insights into the strength of climatic control of different mangrove range limits, we tested whether temporal variability in mangrove abundance increases near range limits and whether this variability is correlated with climatic factors thought to control large scale mangrove distributions. Location: North and South America. Time period: 1984–2011. Major taxa studied: Avicennia germinans, Avicennia schuaeriana, Rhizophora mangle, Laguncularia racemosa. Methods: We characterized temporal variability in the enhanced vegetation index (EVI) at mangrove range limits using Landsat satellite imagery collected between 1984–2011. We characterized greening trends at each range limit, examined variability in EVI along latitudinal gradients near each range limit, and assessed correlations between changes in EVI and temperature and precipitation. Results: Spatial variability in mean EVI was generally correlated with temperature and precipitation, but the relationships were region specific. Greening trends were most pronounced at range limits in eastern North America. In these regions variability in EVI increased toward the range limit and was sensitive to climatic factors. In contrast, EVI at range limits on the Pacific coast of North America and both coasts of South America was relatively stable and less sensitive to climatic variability. Main conclusions: Our results suggest that range limits in eastern North America are strongly controlled by climate factors. Mangrove expansion in response to future warming is expected to be rapid in regions that are highly sensitive to climate variability (e.g. eastern North America), but the response in other range limits (e.g. South America) is likely to be more complex and modulated by additional factors such as dispersal limitation, habitat constraints, and/or changing climatic means rather than just extremes

    Climatic controls on the global distribution, abundance, and species richness of mangrove forests

    Get PDF
    Mangrove forests are highly productive tidal saline wetland ecosystems found along sheltered tropical and subtropical coasts. Ecologists have long assumed that climatic drivers (i.e., temperature and rainfall regimes) govern the global distribution, structure, and function of mangrove forests. However, data constraints have hindered the quantification of direct climate-mangrove linkages in many parts of the world. Recently, the quality and availability of global-scale climate and mangrove data have been improving. Here, we used these data to better understand the influence of air temperature and rainfall regimes upon the distribution, abundance, and species richness of mangrove forests. Although our analyses identify global-scale relationships and thresholds, we show that the influence of climatic drivers is best characterized via regional range-limit-specific analyses. We quantified climatic controls across targeted gradients in temperature and/or rainfall within 14 mangrove distributional range limits. Climatic thresholds for mangrove presence, abundance, and species richness differed among the 14 studied range limits. We identified minimum temperature-based thresholds for range limits in eastern North America, eastern Australia, New Zealand, eastern Asia, eastern South America, and southeast Africa. We identified rainfall-based thresholds for range limits in western North America, western Gulf of Mexico, western South America, western Australia, Middle East, northwest Africa, east central Africa, and west-central Africa. Our results show that in certain range limits (e.g., eastern North America, western Gulf of Mexico, eastern Asia), winter air temperature extremes play an especially important role. We conclude that rainfall and temperature regimes are both important in western North America, western Gulf of Mexico, and western Australia. With climate change, alterations in temperature and rainfall regimes will affect the global distribution, abundance, and diversity of mangrove forests. In general, warmer winter temperatures are expected to allow mangroves to expand poleward at the expense of salt marshes. However, dispersal and habitat availability constraints may hinder expansion near certain range limits. Along arid and semiarid coasts, decreases or increases in rainfall are expected to lead to mangrove contraction or expansion, respectively. Collectively, our analyses quantify climate-mangrove linkages and improve our understanding of the expected global- and regional-scale effects of climate change upon mangrove forests

    Rapidly Changing Range Limits in a Warming World: Critical Data Limitations and Knowledge Gaps for Advancing Understanding of Mangrove Range Dynamics in the Southeastern USA

    Get PDF
    Climate change is altering species’ range limits and transforming ecosystems. For example, warming temperatures are leading to the range expansion of tropical, cold-sensitive species at the expense of their cold-tolerant counterparts. In some temperate and subtropical coastal wetlands, warming winters are enabling mangrove forest encroachment into salt marsh, which is a major regime shift that has significant ecological and societal ramifications. Here, we synthesized existing data and expert knowledge to assess the distribution of mangroves near rapidly changing range limits in the southeastern USA. We used expert elicitation to identify data limitations and highlight knowledge gaps for advancing understanding of past, current, and future range dynamics. Mangroves near poleward range limits are often shorter, wider, and more shrublike compared to their tropical counterparts that grow as tall forests in freeze-free, resource-rich environments. The northern range limits of mangroves in the southeastern USA are particularly dynamic and climate sensitive due to abundance of suitable coastal wetland habitat and the exposure of mangroves to winter temperature extremes that are much colder than comparable range limits on other continents. Thus, there is need for methodological refinements and improved spatiotemporal data regarding changes in mangrove structure and abundance near northern range limits in the southeastern USA. Advancing understanding of rapidly changing range limits is critical for foundation plant species such as mangroves, as it provides a basis for anticipating and preparing for the cascading effects of climate-induced species redistribution on ecosystems and the human communities that depend on their ecosystem services

    Integrating Remote Sensing with Ground-based Observations to Quantify the Effects of an Extreme Freeze Event on Black Mangroves (Avicennia germinans) at the Landscape Scale

    Get PDF
    Climate change is altering the frequency and intensity of extreme weather events. Quantifying ecosystem responses to extreme events at the landscape scale is critical for understanding and responding to climate-driven change but is constrained by limited data availability. Here, we integrated remote sensing with ground-based observations to quantify landscape-scale vegetation damage from an extreme climatic event. We used ground- and satellite-based black mangrove (Avicennia germinans) leaf damage data from the northern Gulf of Mexico (USA and Mexico) to examine the effects of an extreme freeze in a region where black mangroves are expanding their range. The February 2021 event produced coastal temperatures as low as − 10 °C in some areas, exceeding thresholds for A. germinans damage and mortality. We used Sentinel-2 surface reflectance data to assess vegetation greenness before and after the freeze, along with ground-based observations of A. germinans leaf damage. Our results show a negative, nonlinear threshold relationship between A. germinans leaf damage and minimum temperature, with a temperature threshold for leaf damage near − 6 °C. Satellite-based analyses indicate that, at the landscape scale, damage was particularly severe along the central Texas coast, where the freeze event affected \u3e 2000 ha of A. germinans-dominated coastal wetlands. Our analyses highlight the value of pairing remotely sensed data with regional, ground-based observations for quantifying and extrapolating the effects of extreme freeze events on mangroves and other tropical, cold-sensitive plants. The results also demonstrate how extreme freeze events govern the expansion and contraction of mangroves near northern range limits in North America

    Climate and plant controls on soil organic matter in coastal wetlands

    Get PDF
    Coastal wetlands are among the most productive and carbon‐rich ecosystems on Earth. Long‐term carbon storage in coastal wetlands occurs primarily belowground as soil organic matter (SOM). In addition to serving as a carbon sink, SOM influences wetland ecosystem structure, function, and stability. To anticipate and mitigate the effects of climate change, there is a need to advance understanding of environmental controls on wetland SOM. Here, we investigated the influence of four soil formation factors: climate, biota, parent materials, and topography. Along the northern Gulf of Mexico, we collected wetland plant and soil data across elevation and zonation gradients within 10 estuaries that span broad temperature and precipitation gradients. Our results highlight the importance of climate–plant controls and indicate that the influence of elevation is scale and location dependent. Coastal wetland plants are sensitive to climate change; small changes in temperature or precipitation can transform coastal wetland plant communities. Across the region, SOM was greatest in mangrove forests and in salt marshes dominated by graminoid plants. SOM was lower in salt flats that lacked vascular plants and in salt marshes dominated by succulent plants. We quantified strong relationships between precipitation, salinity, plant productivity, and SOM. Low precipitation leads to high salinity, which limits plant productivity and appears to constrain SOM accumulation. Our analyses use data from the Gulf of Mexico, but our results can be related to coastal wetlands across the globe and provide a foundation for predicting the ecological effects of future reductions in precipitation and freshwater availability. Coastal wetlands provide many ecosystem services that are SOM dependent and highly vulnerable to climate change. Collectively, our results indicate that future changes in SOM and plant productivity, regulated by cascading effects of precipitation on freshwater availability and salinity, could impact wetland stability and affect the supply of some wetland ecosystem services

    Linear and nonlinear effects of temperature and precipitation on ecosystem properties in tidal saline wetlands

    Get PDF
    Climate greatly influences the structure and functioning of tidal saline wetland ecosystems. However, there is a need to better quantify the effects of climatic drivers on ecosystem properties, particularly near climate-sensitive ecological transition zones. Here, we used climate- and literature-derived ecological data from tidal saline wetlands to test hypotheses regarding the influence of climatic drivers (i.e., temperature and precipitation regimes) on the following six ecosystem properties: canopy height, biomass, productivity, decomposition, soil carbon density, and soil carbon accumulation. Our analyses quantify and elucidate linear and nonlinear effects of climatic drivers. We quantified positive linear relationships between temperature and above-ground productivity and strong positive nonlinear (sigmoidal) relationships between (1) temperature and above-ground biomass and canopy height and (2) precipitation and canopy height. Near temperature-controlled mangrove range limits, small changes in temperature are expected to trigger comparatively large changes in biomass and canopy height, as mangrove forests grow, expand, and, in some cases, replace salt marshes. However, within these same transition zones, temperature- induced changes in productivity are expected to be comparatively small. Interestingly, despite the significant above-ground height, biomass, and productivity relationships across the tropical–temperate mangrove–marsh transition zone, the relationships between temperature and soil carbon density or soil carbon accumulation were not significant. Our literature review identifies several ecosystem properties and many regions of the world for which there are insufficient data to fully evaluate the influence of climatic drivers, and the identified data gaps can be used by scientists to guide future research. Our analyses indicate that near precipitation-controlled transition zones, small changes in precipitation are expected to trigger comparatively large changes in canopy height. However, there are scant data to evaluate the influence of precipitation on other ecosystem properties. There is a need for more decomposition data across climatic gradients, and to advance understanding of the influence of changes in precipitation and freshwater availability, additional ecological data are needed from tidal saline wetlands in arid climates. Collectively, our results can help scientists and managers better anticipate the linear and nonlinear ecological consequences of climate change for coastal wetlands
    • 

    corecore