16 research outputs found

    New materials based on polylactide modified with silver and carbon ions

    Get PDF
    An integrated study of poly-L-lactide (PL) synthesis and the physicochemical properties of film surfaces, both modified by silver and carbon ion implantation and also unmodified PL surfaces, has been carried out. Surface modification was done using aMevva-5.Ru metal ion source with ion implantation doses of 1·1014, 1·1015 and 1·1016 ion/cm2. Material characterization was done using NMR, IRS, XPS and AFM. The molecular weight (MW), micro-hardness, surface resistivity, and limiting wetting angle of both un-implanted and implanted samples were measured. The results reveal that degradation of PL macromolecules occurs during ion implantation, followed by CO or CO2 removal and MW decrease. With increasing implantation dose, the glycerol wettability of the PL surface increases but the water affinity decreases (hydrophobic behavior). After silver and carbon ion implantation into the PL samples, the surface resistivity is reduced by several orders of magnitude and a tendency to micro-hardness reductionis induced

    Mechanical and tribological characteristics of a-C:H:SiOx films formed by PACVD on titanium alloy VT1-0

    Get PDF
    This paper is devoted to the study of the mechanical and tribological properties of aC:H:SiOx films deposited on a titanium alloy VT1-0 by a plasma chemical deposition method using pulsed bipolar bias voltage. It was shown that after deposition of 2 [mu]m-thick a-C:H:SiOx film on a titanium alloy VT1-0 sample, the root-mean-square surface roughness Rq measured using atomic force microscopy decreased from 74 to 50 nm compared to the original substrate. The surface hardness H measured using nanoindentation increased from 3.3 to 12.4 GPa with an almost unchanged elasticity modulus E. As a result, the plasticity index (H/E) of titanium samples increased from 0.03 to 0.11, and the plastic deformation resistance (H3/E2 ) increased from 3 to 156 MPa. Deposition of a-C:H:SiOx film on the titanium alloy VT1-0 surface makes possible to reduce the friction coefficient from 0.3-0.6 to 0.1 and the wear rate from 6·10-4 to 7•10{-6} mm{3} /Nm

    Surface hardening of stainless steel by runaway electronspreionized diffuse discharge in air atmosphere

    Get PDF
    In this paper we present microhardness measurements of stainless steel surface treated by diffuse discharge in air atmosphere. The cleaning from carbon in comparison to the initial sample was observed at a depth exceeding 20 nm. The oxygen concentration was also increased in comparison to that in the initial sample at a depth of up to about 50 nm. Comparative analysis shows that after treatment the microhardness of stainless steel surface increased in 2 times due to interaction of near-surface layers with product of plasma chemical reactions produced in diffuse discharge

    New materials based on polylactide modified with silver and carbon ions

    No full text
    An integrated study of poly-L-lactide (PL) synthesis and the physicochemical properties of film surfaces, both modified by silver and carbon ion implantation and also unmodified PL surfaces, has been carried out. Surface modification was done using aMevva-5.Ru metal ion source with ion implantation doses of 1·1014, 1·1015 and 1·1016 ion/cm2. Material characterization was done using NMR, IRS, XPS and AFM. The molecular weight (MW), micro-hardness, surface resistivity, and limiting wetting angle of both un-implanted and implanted samples were measured. The results reveal that degradation of PL macromolecules occurs during ion implantation, followed by CO or CO2 removal and MW decrease. With increasing implantation dose, the glycerol wettability of the PL surface increases but the water affinity decreases (hydrophobic behavior). After silver and carbon ion implantation into the PL samples, the surface resistivity is reduced by several orders of magnitude and a tendency to micro-hardness reductionis induced
    corecore