1,073 research outputs found
Superluminality in the Fierz--Pauli massive gravity
We study the propagation of helicity-1 gravitons in the Fierz--Pauli massive
gravity in nearly Minkowski backgrounds. We show that, generically, there exist
backgrounds consistent with field equations, in which the propagation is
superluminal. The relevant distances are much longer than the ultraviolet
cutoff length inherent in the Fierz--Pauli gravity, so superluminality occurs
within the domain of validity of the effective low energy theory. There remains
a possibility that one may get rid of this property by imposing fine tuning
relations between the coefficients in the non-linear generalization of the
Fierz--Pauli mass term, order by order in non-linearity; however, these
relations are not protected by any obvious symmetry. Thus, among others,
superluminality is a problematic property to worry about when attempting to
construct infrared modifications of General Relativity.Comment: 11 pages, no figure
Disclination vortices in elastic media
The vortex-like solutions are studied in the framework of the gauge model of
disclinations in elastic continuum. A complete set of model equations with
disclination driven dislocations taken into account is considered. Within the
linear approximation an exact solution for a low-angle wedge disclination is
found to be independent from the coupling constants of the theory. As a result,
no additional dimensional characteristics (like the core radius of the defect)
are involved. The situation changes drastically for 2\pi vortices where two
characteristic lengths, l_\phi and l_W, become of importance. The asymptotical
behaviour of the solutions for both singular and nonsingular 2\pi vortices is
studied. Forces between pairs of vortices are calculated.Comment: 13 pages, published versio
Transition to Chaotic Phase Synchronization through Random Phase Jumps
Phase synchronization is shown to occur between opposite cells of a ring
consisting of chaotic Lorenz oscillators coupled unidirectionally through
driving. As the coupling strength is diminished, full phase synchronization
cannot be achieved due to random generation of phase jumps. The brownian
dynamics underlying this process is studied in terms of a stochastic diffusion
model of a particle in a one-dimensional medium.Comment: Accepted for publication in IJBC, 10 pages, 5 jpg figure
Neural Distributed Autoassociative Memories: A Survey
Introduction. Neural network models of autoassociative, distributed memory
allow storage and retrieval of many items (vectors) where the number of stored
items can exceed the vector dimension (the number of neurons in the network).
This opens the possibility of a sublinear time search (in the number of stored
items) for approximate nearest neighbors among vectors of high dimension. The
purpose of this paper is to review models of autoassociative, distributed
memory that can be naturally implemented by neural networks (mainly with local
learning rules and iterative dynamics based on information locally available to
neurons). Scope. The survey is focused mainly on the networks of Hopfield,
Willshaw and Potts, that have connections between pairs of neurons and operate
on sparse binary vectors. We discuss not only autoassociative memory, but also
the generalization properties of these networks. We also consider neural
networks with higher-order connections and networks with a bipartite graph
structure for non-binary data with linear constraints. Conclusions. In
conclusion we discuss the relations to similarity search, advantages and
drawbacks of these techniques, and topics for further research. An interesting
and still not completely resolved question is whether neural autoassociative
memories can search for approximate nearest neighbors faster than other index
structures for similarity search, in particular for the case of very high
dimensional vectors.Comment: 31 page
Charge transfer and weak bonding between molecular oxygen and graphene zigzag edges at low temperatures
Electron paramagnetic resonance (EPR) study of air-physisorbed defective
carbon nano-onions evidences in favor of microwave assisted formation of
weakly-bound paramagnetic complexes comprising negatively-charged O2- ions and
edge carbon atoms carrying pi-electronic spins. These complexes being located
on the graphene edges are stable at low temperatures but irreversibly
dissociate at temperatures above 50-60 K. These EPR findings are justified by
density functional theory (DFT) calculations demonstrating transfer of an
electron from the zigzag edge of graphene-like material to oxygen molecule
physisorbed on the graphene sheet edge. This charge transfer causes changing
the spin state of the adsorbed oxygen molecule from S = 1 to S = 1/2 one. DFT
calculations show significant changes of adsorption energy of oxygen molecule
and robustness of the charge transfer to variations of the graphene-like
substrate morphology (flat and corrugated mono- and bi-layered graphene) as
well as edges passivation. The presence of H- and COOH- terminated edge carbon
sites with such corrugated substrate morphology allows formation of ZE-O2-
paramagnetic complexes characterized by small (<50 meV) binding energies and
also explains their irreversible dissociation as revealed by EPR.Comment: 28 pages, 8 figures, 2 tables, accepted in Carbon journa
- …