1,073 research outputs found

    Superluminality in the Fierz--Pauli massive gravity

    Full text link
    We study the propagation of helicity-1 gravitons in the Fierz--Pauli massive gravity in nearly Minkowski backgrounds. We show that, generically, there exist backgrounds consistent with field equations, in which the propagation is superluminal. The relevant distances are much longer than the ultraviolet cutoff length inherent in the Fierz--Pauli gravity, so superluminality occurs within the domain of validity of the effective low energy theory. There remains a possibility that one may get rid of this property by imposing fine tuning relations between the coefficients in the non-linear generalization of the Fierz--Pauli mass term, order by order in non-linearity; however, these relations are not protected by any obvious symmetry. Thus, among others, superluminality is a problematic property to worry about when attempting to construct infrared modifications of General Relativity.Comment: 11 pages, no figure

    Disclination vortices in elastic media

    Full text link
    The vortex-like solutions are studied in the framework of the gauge model of disclinations in elastic continuum. A complete set of model equations with disclination driven dislocations taken into account is considered. Within the linear approximation an exact solution for a low-angle wedge disclination is found to be independent from the coupling constants of the theory. As a result, no additional dimensional characteristics (like the core radius of the defect) are involved. The situation changes drastically for 2\pi vortices where two characteristic lengths, l_\phi and l_W, become of importance. The asymptotical behaviour of the solutions for both singular and nonsingular 2\pi vortices is studied. Forces between pairs of vortices are calculated.Comment: 13 pages, published versio

    Transition to Chaotic Phase Synchronization through Random Phase Jumps

    Full text link
    Phase synchronization is shown to occur between opposite cells of a ring consisting of chaotic Lorenz oscillators coupled unidirectionally through driving. As the coupling strength is diminished, full phase synchronization cannot be achieved due to random generation of phase jumps. The brownian dynamics underlying this process is studied in terms of a stochastic diffusion model of a particle in a one-dimensional medium.Comment: Accepted for publication in IJBC, 10 pages, 5 jpg figure

    Neural Distributed Autoassociative Memories: A Survey

    Full text link
    Introduction. Neural network models of autoassociative, distributed memory allow storage and retrieval of many items (vectors) where the number of stored items can exceed the vector dimension (the number of neurons in the network). This opens the possibility of a sublinear time search (in the number of stored items) for approximate nearest neighbors among vectors of high dimension. The purpose of this paper is to review models of autoassociative, distributed memory that can be naturally implemented by neural networks (mainly with local learning rules and iterative dynamics based on information locally available to neurons). Scope. The survey is focused mainly on the networks of Hopfield, Willshaw and Potts, that have connections between pairs of neurons and operate on sparse binary vectors. We discuss not only autoassociative memory, but also the generalization properties of these networks. We also consider neural networks with higher-order connections and networks with a bipartite graph structure for non-binary data with linear constraints. Conclusions. In conclusion we discuss the relations to similarity search, advantages and drawbacks of these techniques, and topics for further research. An interesting and still not completely resolved question is whether neural autoassociative memories can search for approximate nearest neighbors faster than other index structures for similarity search, in particular for the case of very high dimensional vectors.Comment: 31 page

    Charge transfer and weak bonding between molecular oxygen and graphene zigzag edges at low temperatures

    Full text link
    Electron paramagnetic resonance (EPR) study of air-physisorbed defective carbon nano-onions evidences in favor of microwave assisted formation of weakly-bound paramagnetic complexes comprising negatively-charged O2- ions and edge carbon atoms carrying pi-electronic spins. These complexes being located on the graphene edges are stable at low temperatures but irreversibly dissociate at temperatures above 50-60 K. These EPR findings are justified by density functional theory (DFT) calculations demonstrating transfer of an electron from the zigzag edge of graphene-like material to oxygen molecule physisorbed on the graphene sheet edge. This charge transfer causes changing the spin state of the adsorbed oxygen molecule from S = 1 to S = 1/2 one. DFT calculations show significant changes of adsorption energy of oxygen molecule and robustness of the charge transfer to variations of the graphene-like substrate morphology (flat and corrugated mono- and bi-layered graphene) as well as edges passivation. The presence of H- and COOH- terminated edge carbon sites with such corrugated substrate morphology allows formation of ZE-O2- paramagnetic complexes characterized by small (<50 meV) binding energies and also explains their irreversible dissociation as revealed by EPR.Comment: 28 pages, 8 figures, 2 tables, accepted in Carbon journa
    corecore