629 research outputs found

    Reaction of curium(III) ions with oxo-species in alkali chloride melts

    Full text link
    Electronic absorption spectra of curium(III) chloro-species were measured in 3LiCl-2KCl (at 450 °C) and NaCl-2CsCl (at 550, 650 and 750 °C) eutectic melts and the molar absorption coefficients determined. The effect of oxide species addition to the melt on the absorption spectra of curium was studied. A new species, evident from the absorption bands around 360 nm, is formed when barium oxide is dissolved in the melt or O2-Cl 2 or Ar-HCl-H2O gas mixtures bubbled through. This species is ascribed to soluble curium oxychloride. It does not react with chlorine bubbled through the melt unless there is carbon present. ©The Electrochemical Society.Physical and Analytical Electrochemistry;Electrodeposition;Energy Technolog

    Global Analysis of Data on the Proton Structure Function g1 and Extraction of its Moments

    Get PDF
    Inspired by recent measurements with the CLAS detector at Jefferson Lab, we perform a self-consistent analysis of world data on the proton structure function g1 in the range 0.17 < Q2 < 30 (GeV/c)**2. We compute for the first time low-order moments of g1 and study their evolution from small to large values of Q2. The analysis includes the latest data on both the unpolarized inclusive cross sections and the ratio R = sigmaL / sigmaT from Jefferson Lab, as well as a new model for the transverse asymmetry A2 in the resonance region. The contributions of both leading and higher twists are extracted, taking into account effects from radiative corrections beyond the next-to-leading order by means of soft-gluon resummation techniques. The leading twist is determined with remarkably good accuracy and is compared with the predictions obtained using various polarized parton distribution sets available in the literature. The contribution of higher twists to the g1 moments is found to be significantly larger than in the case of the unpolarized structure function F2.Comment: 18 pages, 13 figures, to appear in Phys. Rev.

    Study of uranium solubility in gallium-indium eutectic alloy by emf method

    Full text link
    Activity, activity coefficients and solubility of uranium in Ga-In eutectic alloy as well as activity of uranium in U-Ga and U-In alloys were determined between 573 and 1073 K using electromotive force (emf) method. © 2013 Pleiades Publishing, Ltd

    Thermodynamics of reaction of praseodymium with gallium-indium eutectic alloy

    Full text link
    Thermodynamic properties of Ga-In eutectic alloys saturated with praseodymium were determined for the first time employing the electromotive force method. The equilibrium potentials of the Pr-In alloys saturated with praseodymium (8.7-12.1 mol.% Pr) and Pr-Ga-In alloys (containing 0.0012-6.71 mol.% Pr) were measured between 573-1073 K. Pr-In alloy containing solid PrIn3 with known thermodynamic properties was used as the reference electrode when measuring the potentials of ternary Pr-In-Ga alloys. Activity, partial and excessive thermodynamic functions of praseodymium in alloys with indium and Ga-In eutectic were calculated. Activity (a), activity coefficients (γ) and solubility (X) of praseodymium in the studied temperature range can be expressed by the following equations: lgaα-Pr(In) = 4.425 - 11965/T ± 0.026. lgα-Pr(Ga-In) = 5.866 - 14766/T ± 0.190. lgγα-Pr(Ga-In) = 2.351 - 9996/T ± 0.39. lgPr(Ga-In) = 3.515 - 4770/T ± 0.20. © 2013 Elsevier B.V. All rights reserved

    Thermodynamic properties of lanthanum in gallium-indium eutectic based alloys

    Full text link
    Activity and activity coefficients of lanthanum were determined for the first time in gallium-indium eutectic based alloys in a wide temperature range employing electromotive force method. Activity of β-La and super cooled liquid lanthanum in Ga-In eutectic based alloys between 573 and 1073 K linearly depends on the reciprocal temperature: lgaβ-La(Ga-In)=5.660-15, 352T±0.093 lgaLa(Ga-In)=6.074-15,839T±0.093 Activity coefficients of β-La and super cooled liquid lanthanum in this system at 617-1073 K are described by the following equations: lgγβ-La (Ga-In)=3.786-12,216T±0.171 lgγLa(Ga-In)=4. 199-12,703T±0.171 In addition activity of lanthanum in alloys with In was also determined in the same temperature range. © 2012 Elsevier B.V. All rights reserved

    Excessive thermodynamic properties of praseodymium in a gallium-indium alloy

    Full text link
    The equilibrium potentials of praseodymium-diluted homogeneous Pr-Ga-In alloys in a (Li-K-Cs)Cleut-based salt electrolyte were measured between 573-1073 K by the emf method. These potentials are used to calculate the activity coefficients of α-praseodymium in liquid Ga-In eutectic alloys. PrIn3 alloy with well-known thermodynamic characteristics and without phase transitions in the temperature range 428-1483 K was employed as the reference electrode. © 2013 Pleiades Publishing, Ltd

    Thermodynamic properties of uranium in Ga-In based alloys

    Full text link
    Activity of uranium was determined in gallium, indium and gallium-indium eutectic (21.8 wt.% In) based alloys between 573 and 1073 K employing the electromotive force method. In two-phase U-Ga-In alloys, uranium forms the intermetallic compound UGa3. Activity coefficients and solubility of uranium in Ga-In eutectic were also determined in the same temperature range. Partial thermodynamic functions of γ-U in saturated alloys with gallium, indium and Ga-In eutectic were calculated. © 2013 Elsevier B.V. All rights reserved
    corecore