46 research outputs found

    Mechanical properties of bulk Sylgard 184 and its extension with silicone oil

    Get PDF
    Due to its simple curing and very good mechanical properties, Sylgard 184 belongs to the most widely and frequently used silicones in many industrial applications such as microfluidics and microengineering. On top of that its mechanical properties are further controllable through the curing temperature, which may vary from ambient temperature up to 200 °C; the lower the curing temperature the lower the mechanical properties (Johnston et al. in J Micromech Microeng 24:7, 2014. 10.1088/0960-1317/24/3/035017). However, certain specialised application may require even a softer binder than the low curing temperature allows for. In this study we show that this softening can be achieved with the addition of silicone oil into the Sylgard 184 system. To this end a series of Sylgard 184 samples with varying silicone oil concentrations were prepared and tested (tensile test, rotational rheometer) in order to determine how curing temperature and silicone oil content affect mechanical properties. Curing reaction of the polymer system was found to observe 2nd order kinetics in all cases, regardless the oil concentration used. The results suggest that within the tested concentration range the silicone oil addition can be used to soften commercial silicone Sylgard 184. © 2021, The Author(s).Ministry of Education, Youth and Sports of the Czech RepublicMinistry of Education, Youth & Sports - Czech Republic [RP/CPS/2020/006]Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT: RP/CPS/2020/00

    The impact of polymer grafting from a graphene oxide surface on its compatibility with a PDMS matrix and the light-induced actuation of the composites

    Get PDF
    Poly(dimethyl siloxane) (PDMS)-based materials with improved photoactuation properties were prepared by the incorporation of polymer-grafted graphene oxide particles. The modification of the graphene oxide (GO) surface was achieved via a surface initiated atom transfer radical polymerization (SI ATRP) of methyl methacrylate and butyl methacrylate. The modification was confirmed by thermogravimetric analysis, infrared spectroscopy and electron microscopy. The GO surface reduction during the SI ATRP was investigated using Raman spectroscopy and conductivity measurements. Contact angle measurements, dielectric spectroscopy and dynamic mechanical analyses were used to investigate the compatibility of the GO filler with the PDMS matrix and the influence of the GO surface modification on its physical properties and the interactions with the matrix. Finally, the thermal conductivity and photoactuation properties of the PDMS matrix and composites were compared. The incorporation of GO with grafted polymer chains, especially poly(n-butyl methacrylate), into the PDMS matrix improved the compatibility of the GO filler with the matrix, increased the energy dissipation due to the improved flexibility of the PDMS chains, enhanced the damping behavior and increased the thermal conductivity. All the changes in the properties positively affected the photoactuation behavior of the PDMS composites containing polymer-grafted GO. © 2017 by the authors.LO1504, MOE, Ministry of EducationGrant Agency of the Czech Republic [16-20361Y]; Ministry of Education, Youth and Sports of the Czech Republic-program NPU I [LO1504]; SRDA [APVV-15-0545]; VEGA [VEGA 2/0161/17]; Slovak Academy of Sciences [SAS-MOST JRP 2014-9

    Enhanced and tunable electrorheological capability using surface initiated atom transfer radical polymerization modification with simultaneous reduction of the graphene oxide by silyl-based polymer grafting

    Get PDF
    In this study, a verified process of the "grafting from" approach using surface initiated atom transfer radical polymerization was applied for the modification of a graphene oxide (GO) surface. This approach provides simultaneous grafting of poly(2-(trimethylsilyloxy)ethyl methacrylate) (PHEMATMS) chains and a controllable reduction of the GO surface. This allows the fine tuning of its electrical conductivity, which is a crucial parameter for applications of such hybrid composite particles in electrorheological (ER) suspensions. The successful coating was confirmed by transmission electron microscopy and Fourier-transform infrared spectroscopy. The molecular characteristics of PHEMATMS were characterized by gel permeation chromatography. ER performance was elucidated using a rotational rheometer under various electric field strengths and a dielectric spectroscopy to demonstrate the direct impact of both the relaxation time and dielectric relaxation strength on the ER effectivity. Enhanced compatibility between the silicone oil and polymer-modified GO particles was investigated using contact angle measurements and visual sedimentation stability determination. It was clearly proven that the modification of the GO surface improved the ER capability of the system due to the tunable conductivity during the surface-initiated atom transfer radical polymerization (SI-ATRP) process and the enhanced compatibility of the GO particles, modified by polymer containing silyl structures, with silicone oil. These unique ER properties of this system appear very promising for future applications in the design of ER suspensions.Grant Agency of the Czech Republic [16-20361Y]; Ministry of Education, Youth and Sports of the Czech Republic-program NPU I [LO1504]; European Union [CZ. 02.2.69/0.0/0.0/16_027/0008464]; Operational Program for Research, Development and Education; National Science Centre, Poland [UMO-2016/23/P/ST5/02131]; European Unions [665778]; [APVV-14-0891]; [APVV-15-0545

    Cutting Force When Machining Hardened Steel and the Surface Roughness Achieved

    Get PDF
    This article deals primarily with the problem of determining the cutting force when machining hardened steels. For this study, the steel used was 100 Cr6, number 1.3505. The secondary aspects of the study focused on the evaluation of the surface quality of machined samples and the recommendation of cutting conditions. A wide variety of components are used in engineering, the final heat treatment of which is hardening. These components are usually critical in a particular product. The quality of these components determines the correct functioning of the entire body of technical equipment, and ultimately, its service life. In our study, these are the core parts of thrust bearings, specifically the rolling elements. The subject of this experiment involves machining these components in the hardened state with cubic boron nitride tools and the continuous measurement of the cutting force using a dynamometer. The machining is carried out on a conventional lathe. A total of 12 combinations of cutting conditions were set. Specifically, for three cutting speeds of 130, 155 and 180 m·min1, the feed rates of 0.05 and 0.1 mm·rev1 and the cutting widths of 0.2 and 0.35 mm, were evaluated The evaluation assessed the surface quality by both touch and non-touch methods. A structural equation with the appropriate constants and exponents was then constructed from the data obtained using the dynamometer. The experiment confirmed the potential of achieving a value of the average arithmetic profile deviation Ra in the range of 0.3–0.4 when turning hardened steels with cubic boron nitride

    Electrorheological performance of graphene oxide particles grafted with poly(alpha-methylstyrene) using SI-ATRP approach

    Get PDF
    Electrorheological (ER) suspension are special class of systems, those physical properties, such as viscosity can be tuned using external electric field strength. Generally, they are two-phase systems consisting of solid polarizable particles and liquid insulating medium. After application of the external electric field, the particles are polarized and create the chain-like structures in the direction of the electric field streamlines. Such internal structure development resulting in the significant increase in viscosity usually in four orders of magnitude and more. This phenomenon is reversible, repeatable and once the electric field is switched-off the suspension become to its initial state. However, due to the usually various nature of dispersed phase and liquid medium, the sedimentation stability of the suspensions is the main issue. In addition, the ER performance of various systems based on conducting polymers is not sufficient, thus the development of the novel dispersed phases are still attractive. Moreover, graphene oxide (GO) particles and their hybrids were recently recognized as suitable materials for ER suspensions. Hence, we were performed the SI-ATRP from GO surface as a novel approach how to provide GO-polymer particles with tunable conductivity and polymer layer in single step and thus solve the main drawbacks such as sedimentation stability as well as proper ER performance. © 2018 TANGER Ltd. All Rights Reserved.Grant Agency of the Czech Republic [16-20361Y]; Ministry of Education, Youth and Sports of the Czech Republic - program NPU I [LO1504]; [APVV-15-0545

    Reversible actuation ability upon light stimulation of the smart systems with controllably grafted graphene oxide with poly (glycidyl methacrylate) and PDMS elastomer: Effect of compatibility and graphene oxide reduction on the photo-actuation performance

    Get PDF
    This study is focused on the controllable reduction of the graphene oxide (GO) during the surface-initiated atom transfer radical polymerization technique of glycidyl methacrylate (GMA). The successful modification was confirmed using TGA-FTIR analysis and TEM microscopy observation of the polymer shell. The simultaneous reduction of the GO particles was confirmed indirectly via TGA and directly via Raman spectroscopy and electrical conductivity investigations. Enhanced compatibility of the GO-PGMA particles with a polydimethylsiloxane (PDMS) elastomeric matrix was proven using contact angle measurements. Prepared composites were further investigated through the dielectric spectroscopy to provide information about the polymer chain mobility through the activation energy. Dynamic mechanical properties investigation showed an excellent mechanical response on the dynamic stimulation at a broad temperature range. Thermal conductivity evaluation also confirmed the further photo-actuation capability properties at light stimulation of various intensities and proved that composite material consisting of GO-PGMA particles provide systems with a significantly enhanced capability in comparison with neat GO as well as neat PDMS matrix. © 2018 by the authors.Czech Science Foundation [16-20361Y]; Ministry of Education, Youth and Sports of the Czech Republic-program NPU I [L01504]; Operational Program Research and Development for Innovations - the European Regional Development Fund (ERDF); project CPS-strengthening research capacity [CZ.1.05/2.1.00/19.0409]; [APVV-15-0545]; [APVV-14-0891

    Effect of extrusion process and various elongation ratios on the structural and dielectric properties of pvdf-based copolymer containing micro and nano-sized crystallites

    Get PDF
    In this contribution, the effect of the extrusion process of the poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP) with the subsequent elongation/poling on its structural and dielectric properties is presented. The extrusion can be understood as continuous processing of polymer melts in the large scale (in comparison to solvent casting), when the thickness of the final product can be varied depending on the final operation conditions. Herein, the PVDF-co-HFP sheets of 5 cm in width were extruded using a single screw extruder. The fabricated sheets were cooled down and then, they were cut to the stripes and subsequently stretched to various elongations (100, 200 and 500 %) using a universal tensile testing machine. Such samples were investigated using FTIR in order to determine the effect of the elongation process on the transformation of the a-phase to the β-crystalline phase. The extend of the electro-active β-phase was quantified and its impact on the dielectric properties was investigated. The results clearly demonstrated that the elongation has a crucial effect on the final dielectric properties of the PVDF-co-HFP. © 2021 TANGER Ltd., Ostrava.Czech Science FoundationGrant Agency of the Czech Republic [19-17457S]; Ministry of Education, Youth and Sports of the Czech Republic DKRVO [RP/CPS/2020/003, RP/CPS/2020/006]RP/CPS/2020/003, RP/CPS/2020/006; Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT; Grantová Agentura České Republiky, GA ČR: 19-17457

    PVDF/PVDF-TRFE blends loaded with BaTiO3: from processing to performance testing

    Get PDF
    Concerns surrounding the limited supply of fossil fuels have been the subject of much debate. As of promising solutions, polymers like poly(vinylidene fluoride) (PVDF) have gained attention due to their ability to generate electrical energy from the waste mechanical vibrations. The energy harvesting and vibration sensing potential of PVDF is however limited due to its low content of electroactive β-phase, which has to be increased by indirect post-processing. Recently, a synergistic effect was found in PVDF directly blended with its trifluoroethylene copolymer (PVDF-TrFE) due to strong interfacial polarization. In this study, we aim to further increment the piezoelectric performance of PVDF/PVDF-TrFE blends by incorporating a small amount of BaTiO3 nanocrystals via a facile and scalable processing route. The β-phase content was monitored using FTIR and XRD. Melt rheology experiments showed that co-blending of PVDF-TrFE as well as the addition of BaTiO3 slightly increased melt viscosity and complex modulus. Despite that, rheological data suggested that developed formulations can be processed by conventional techniques intended for a large-scale production. More importantly, PVDF/PVDF-TrFE binary blends supplemented with BaTiO3 are expected to exhibit superior d33 compared to conventional neat blends, which could make them highly promising for modern energy harvesting and sensor-related applications. © 2021 NANOCON Conference Proceedings - International Conference on Nanomaterials. All rights reserved.RP/CPS/2020/003, RP/CPS/2020/006; Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT; Grantová Agentura České Republiky, GA ČR: 19-17457

    Simplified synthesis of silver nanoparticles on graphene oxide and their applications in electrocatalysis

    Get PDF
    In this work the possibility of synthesizing in situ silver nanoparticles (AgNPs) on graphene oxide (GO) surfaces without commonly used additional reducing or alkalizing agents or increased temperature was investigated. Using diverse microscopic (atomic force microscopy, transmission electron microscopy) and spectroscopic methods, it was proved that very small AgNPs were formed on GO by simple incubation for 2 h in a mixture of GO dispersion and AgNO3. The prepared nanomaterial (GO_Ag) was also assessed using electrochemical methods, and it exhibited electrochemical behavior similar to the GO_Ag nanomaterial prepared with a help of citric acid as a reducing agent. Furthermore, it was found that (i) the electrochemical reduction of the GO_Ag on the electrode surface decreased the voltammetric response even though this step increased the surface conductivity and (ii) GO_Ag can be employed for the sensing of chlorides with a detection limit of 79 μM and a linear range of up to 10 mM. It could also provide an electrochemical response toward the chloroacetanilide herbicide metazachlor. Hence, the reducing capabilities of GO were proved to be applicable for in situ synthesis of metal nanoparticles with the highest possible simplification, and the as-prepared nanomaterials could be employed for fabrication of different electrochemical sensors.Grant Agency of Czech RepublicGrant Agency of the Czech Republic [GACR 20-27735Y
    corecore