76 research outputs found

    Minimal Change Disease Is Associated With Endothelial Glycocalyx Degradation and Endothelial Activation

    Get PDF
    Endothelial glycocalyx; Glomerular endothelial cell; Minimal change diseaseGlicocàlix endotelial; Cèl·lula endotelial glomerular; Malaltia de canvis mínimsGlicocálix endotelial; Célula endotelial glomerular; Enfermedad de cambios mínimosIntroduction Minimal change disease (MCD) is considered a podocyte disorder triggered by unknown circulating factors. Here, we hypothesized that the endothelial cell (EC) is also involved in MCD. Methods We studied 45 children with idiopathic nephrotic syndrome (44 had steroid sensitive nephrotic syndrome [SSNS], and 12 had biopsy-proven MCD), 21 adults with MCD, and 38 healthy controls (30 children, 8 adults). In circulation, we measured products of endothelial glycocalyx (EG) degradation (syndecan-1, heparan sulfate [HS] fragments), HS proteoglycan cleaving enzymes (matrix metalloprotease-2 [MMP-2], heparanase activity), and markers of endothelial activation (von Willebrand factor [vWF], thrombomodulin) by enzyme-linked immunosorbent assay (ELISA) and mass spectrometry. In human kidney tissue, we assessed glomerular EC (GEnC) activation by immunofluorescence of caveolin-1 (n = 11 MCD, n = 5 controls). In vitro, we cultured immortalized human GEnC with sera from control subjects and patients with MCD/SSNS sera in relapse (n = 5 per group) and performed Western blotting of thrombomodulin of cell lysates as surrogate marker of endothelial activation. Results In circulation, median concentrations of all endothelial markers were higher in patients with active disease compared with controls and remained high in some patients during remission. In the MCD glomerulus, caveolin-1 expression was higher, in an endothelial-specific pattern, compared with controls. In cultured human GEnC, sera from children with MCD/SSNS in relapse increased thrombomodulin expression compared with control sera. Conclusion Our data show that alterations involving the systemic and glomerular endothelium are nearly universal in patients with MCD and SSNS, and that GEnC can be directly activated by circulating factors present in the MCD/SSNS sera during relapse

    Brain MRI with Quantitative Susceptibility Mapping: Relationship to CT Attenuation Values

    Get PDF
    [Background]: Quantitative susceptibility mapping (QSM) is used to differentiate between calcification and iron deposits. Few studies have examined the relationship between CT attenuation values and magnetic susceptibility in such materials. Purpose: To assess the relationship among metal concentration, CT attenuation values, and magnetic susceptibility in paramagnetic and diamagnetic phantoms, and the relationship between CT attenuation values and susceptibility in brain structures that have paramagnetic or diamagnetic properties. [Materials and Methods]: In this retrospective study, CT and MRI with QSM were performed in gadolinium and calcium phantoms, patients, and healthy volunteers between June 2016 and September 2017. In the phantom study, we evaluated correlations among metal concentration, CT attenuation values, and susceptibility. In the human study, Pearson and Spearman correlations were performed to assess the relationship between CT attenuation values and susceptibility in regions of interest placed in the globus pallidus (GP), putamen, caudate nucleus, substantia nigra, red nucleus, dentate nucleus, choroid plexus, and hemorrhagic and calcified lesions. [Results]: Eighty-four patients (mean age, 64.8 years 6 19.6; 49 women) and 20 healthy volunteers (mean age, 72.0 years 6 7.6; 11 men) were evaluated. In the phantoms, strong linear correlations were identified between gadolinium concentration and CT and MRI QSM values (R2 = 0.95 and 0.99, respectively; P , .001 for both) and between calcium concentration and CT and MRI QSM values (R2 = 0.89 [P = .005] and R2 = 0.98 [P , .001], respectively). In human studies, positive correlations between CT attenuation values and susceptibility were observed in the GP (R2 = 0.52, P , .001) and in hemorrhagic lesions (R2 = 0.38, P , .001), and negative correlations were found in the choroid plexus (R2 = 0.53, P , .001) and in calcified lesions (R2 = 0.38, P = .009). [Conclusion]: CT attenuation values showed a positive correlation with susceptibility in the globus pallidus and hemorrhagic lesions and negative correlation in the choroid plexus and calcified lesions

    Cyp2c44 Gene Disruption Exacerbated Pulmonary Hypertension and Heart Failure in Female but Not Male Mice

    Get PDF
    Epoxyeicosatrienoicacids (EETs), synthesized from arachidonic acid by epoxygenases of the CYP2C and CYP2J gene subfamilies, contribute to hypoxic pulmonary vasoconstriction (HPV) in mice. Despite their roles in HPV, it is controversial whether EETs mediate or ameliorate pulmonary hypertension (PH). A recent study showed that deficiency of Cyp2j did not protect male and female mice from hypoxia-induced PH. Since CYP2C44 is a functionally important epoxygenase, we hypothesized that knockout of the Cyp2c44 gene would protect both sexes of mice from hypoxia-induced PH. We tested this hypothesis in wild-type (WT) and Cyp2c44 knockout (Cyp2c44 (-/-)) mice exposed to normoxia (room air) and hypoxia (10% O2) for 5 weeks. Exposure of WT and Cyp2c44 (-/-) mice to hypoxia resulted in pulmonary vascular remodeling, increased pulmonary artery resistance, and decreased cardiac function in both sexes. However, in female Cyp2c44 (-/-) mice, compared with WT mice, (1) pulmonary artery resistance and right ventricular hypertrophy were greater, (2) cardiac index was lower, (3) left ventricular and arterial stiffness were higher, and (4) plasma aldosterone levels were higher, but (5) there was no difference in levels of EET in lungs and heart. Paradoxically and unexpectedly, we found that Cyp2c44 disruption exacerbated hypoxia-induced PH in female but not male mice. We attribute exacerbated PH in female Cyp2c44 (-/-) mice to elevated aldosterone and as-yet-unknown systemic factors. Therefore, we suggest a role for the human CYP2C genes in protecting women from severe PH and that this could be one of the underlying causes for a better 5-year survival rate in women than in men

    Signal Intensity and Volume of Pituitary and Thyroid Glands in Preterm and Term Infants

    Get PDF
    [Background]: Hypothalamic–pituitary–thyroid (HPT) maturation has not been extensively evaluated using neonatal MRI, even though both structures are visualized on MRI. [Hypothesis]: That signal intensity and volume of pituitary and thyroid (T) glands on MRI in neonates may be interrelated. [Study Type]: Retrospective. [Subjects]: In all, 102 participants. [Field Strength/Sequence]: 3.0T, T₁‐weighted pointwise encoding time reduction with radial acquisition (PETRA).[ Assessment]: The volume of interest of the anterior pituitary (AP), posterior pituitary (PP), and T on MRI were defined on T₁‐PETRA by two radiologists, and volumes of AP (AP_vol) and thyroid (T_vol) were calculated. Gestational age (GA), chronological age (CA), GA+CA, birth weight (BW), and thyroid function were recorded. Mean and maximum signal intensities of AP, PP, and T were normalized using signals from the pons and spinal cord as follows: signal ratio of anterior pituitary/pons (AP/pons), signal ratio of posterior pituitary/pons (PP/pons), and signal ratio of thyroid/cord (T/cord) T/cord, respectively. [Statistical Tests]: Correlations between signal intensity and volume measures and GA, CA, GA+CA, and BW were assessed using Pearson's correlation coefficient or Spearman's rank correlation coefficient. Thyroid function analysis and Tmean/cord, Tmax/cord, and T_vol were evaluated using the Steel–Dwass test. Results: APmean/pons correlated positively with GA (ρ = 0.62, P < 0.001) and BW (ρ = 0.74, P < 0.001), and negatively with CA (ρ = −0.86, P < 0.001) and GA+CA (ρ = −0.46, P < 0.001). PPmean/pons correlated positively with GA (ρ = 0.49, P < 0.001) and BW (ρ = 0.63, P < 0.001), and negatively with CA (ρ = −0.70, P < 0.001) and GA+CA (r = −0.38, P < 0.001). Tmean/cord correlated positively with GA (ρ = 0.48, P < 0.001) and BW (ρ = 0.55, P < 0.001), and negatively with CA (ρ = −0.59, P < 0.001) and GA+CA (ρ = −0.22, P = 0.03). AP_vol correlated positively with GA (ρ = 0.68, P < 0.001) and BW (ρ = 0.73, P < 0.001), and negatively with CA (ρ = −0.72, P < 0.001). T_vol correlated positively with GA (ρ = 0.50, P < 0.001) and BW (ρ = 0.61, P < 0.001), and negatively with CA (ρ = −0.54, P < 0.001). APmean/pons correlated positively with Tmean/cord (ρ = 0.61, P < 0.001). [Data Conclusion]: Signal and volume of pituitary and thyroid glands correlated positively with GA and BW, and negatively with CA in neonates. [Level of Evidence]: 4 [Technical Efficacy Stage]:

    A novel transgenic chimaeric mouse system for the rapid functional evaluation of genes encoding secreted proteins

    Get PDF
    A major challenge of the post-genomic era is the functional characterization of anonymous open reading frames (ORFs) identified by the Human Genome Project. In this context, there is a strong requirement for the development of technologies that enhance our ability to analyze gene functions at the level of the whole organism. Here, we describe a rapid and efficient procedure to generate transgenic chimaeric mice that continuously secrete a foreign protein into the systemic circulation. The transgene units were inserted into the genomic site adjacent to the endogenous immunoglobulin (Ig) κ locus by homologous recombination, using a modified mouse embryonic stem (ES) cell line that exhibits a high frequency of homologous recombination at the Igκ region. The resultant ES clones were injected into embryos derived from a B-cell-deficient host strain, thus producing chimaerism-independent, B-cell-specific transgene expression. This feature of the system eliminates the time-consuming breeding typically implemented in standard transgenic strategies and allows for evaluating the effect of ectopic transgene expression directly in the resulting chimaeric mice. To demonstrate the utility of this system we showed high-level protein expression in the sera and severe phenotypes in human EPO (hEPO) and murine thrombopoietin (mTPO) transgenic chimaeras

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    An Imaging Technique for Measuring Wave Surface Shapes

    Get PDF
    A novel imaging technique for identifying the locations of free-surface shapes was applied to three-dimensional hydraulic tests of coastal structures. Three-dimensional wave fields, consisting of superposed local reflected and diffracted waves, were measured around a breakwater and the mouth of a model harbor in a laboratory wave basin, and the results are consistent with the predictions of a Boussinesq-type equation model. The new technique was applied to surf zone waves to describe the organized deformation of breaking wave faces that evolve during wave propagation. Typical finger-shaped jets form in the wake of plunging jets, and a local depression trails behind a breaking wave front
    corecore