56 research outputs found

    Silencing of p53 and CDKN1A establishes sustainable immortalized megakaryocyte progenitor cells from human iPSCs

    Get PDF
    iPS細胞を用いた人工血小板の作製の効率化に成功 血小板のテイラーメイド医療に向けた一歩. 京都大学プレスリリース. 2021-12-03.Platelet transfusions are critical for severe thrombocytopenia but depend on blood donors. The shortage of donors and the potential of universal HLA-null platelet products have stimulated research on the ex vivo differentiation of human pluripotent stem cells (hPSCs) to platelets. We recently established expandable immortalized megakaryocyte cell lines (imMKCLs) from hPSCs by transducing MYC, BMI1, and BCL-XL (MBX). imMKCLs can act as cryopreservable master cells to supply platelet concentrates. However, the proliferation rates of the imMKCLs vary with the starting hPSC clone. In this study, we reveal from the gene expression profiles of several MKCL clones that the proliferation arrest is correlated with the expression levels of specific cyclin-dependent kinase inhibitors. Silencing CDKN1A and p53 with the overexpression of MBX was effective at stably inducing imMKCLs that generate functional platelets irrespective of the hPSC clone. Collectively, this improvement in generating imMKCLs should contribute to platelet industrialization and platelet biology

    Bmi1 Confers Resistance to Oxidative Stress on Hematopoietic Stem Cells

    Get PDF
    The polycomb-group (PcG) proteins function as general regulators of stem cells. We previously reported that retrovirus-mediated overexpression of Bmi1, a gene encoding a core component of polycomb repressive complex (PRC) 1, maintained self-renewing hematopoietic stem cells (HSCs) during long-term culture. However, the effects of overexpression of Bmi1 on HSCs in vivo remained to be precisely addressed.In this study, we generated a mouse line where Bmi1 can be conditionally overexpressed under the control of the endogenous Rosa26 promoter in a hematopoietic cell-specific fashion (Tie2-Cre;R26Stop(FL)Bmi1). Although overexpression of Bmi1 did not significantly affect steady state hematopoiesis, it promoted expansion of functional HSCs during ex vivo culture and efficiently protected HSCs against loss of self-renewal capacity during serial transplantation. Overexpression of Bmi1 had no effect on DNA damage response triggered by ionizing radiation. In contrast, Tie2-Cre;R26Stop(FL)Bmi1 HSCs under oxidative stress maintained a multipotent state and generally tolerated oxidative stress better than the control. Unexpectedly, overexpression of Bmi1 had no impact on the level of intracellular reactive oxygen species (ROS).Our findings demonstrate that overexpression of Bmi1 confers resistance to stresses, particularly oxidative stress, onto HSCs. This thereby enhances their regenerative capacity and suggests that Bmi1 is located downstream of ROS signaling and negatively regulated by it

    Structure of the C. elegans

    No full text

    Structural basis of hydroxycarboxylic acid receptor signaling mechanisms through ligand binding

    No full text
    Abstract Hydroxycarboxylic acid receptors (HCA) are expressed in various tissues and immune cells. HCA2 and its agonist are thus important targets for treating inflammatory and metabolic disorders. Only limited information is available, however, on the active-state binding of HCAs with agonists. Here, we present cryo-EM structures of human HCA2-Gi and HCA3-Gi signaling complexes binding with multiple compounds bound. Agonists were revealed to form a salt bridge with arginine, which is conserved in the HCA family, to activate these receptors. Extracellular regions of the receptors form a lid-like structure that covers the ligand-binding pocket. Although transmembrane (TM) 6 in HCAs undergoes dynamic conformational changes, ligands do not directly interact with amino acids in TM6, suggesting that indirect signaling induces a slight shift in TM6 to activate Gi proteins. Structural analyses of agonist-bound HCA2 and HCA3 together with mutagenesis and molecular dynamics simulation provide molecular insights into HCA ligand recognition and activation mechanisms

    Structural insight into the activation mechanism of MrgD with heterotrimeric Gi-protein revealed by cryo-EM

    No full text
    Cryo-electron microscopy reveals the structure and activation mechanism of MrgD, a member of the Mas-related G protein-coupled receptor family of GPCRs involved in itch and nociception
    corecore