33 research outputs found

    Characterization of an H4N2 influenza virus from Quails with a multibasic motif in the hemagglutinin cleavage site

    Get PDF
    AbstractThe cleavage motif in the hemagglutinin (HA) protein of highly pathogenic H5 and H7 subtypes of avian influenza viruses is characterized by a peptide insertion or a multibasic cleavage site (MBCS). Here, we isolated an H4N2 virus from quails (Quail/CA12) with two additional arginines in the HA cleavage site, PEKRRTR/G, forming an MBCS-like motif. Quail/CA12 is a reassortant virus with the HA and neuraminidase (NA) gene most similar to a duck-isolated H4N2 virus, PD/CA06 with a monobasic HA cleavage site. Quail/CA12 required exogenous trypsin for efficient growth in culture and caused no clinical illness in infected chickens. Quail/CA12 had high binding preference for α2,6-linked sialic acids and showed higher replication and transmission ability in chickens and quails than PD/CA06. Although the H4N2 virus remained low pathogenic, these data suggests that the acquisition of MBCS in the field is not restricted to H5 or H7 subtypes

    Detection of Antibodies against Turkey Astrovirus in Humans

    Get PDF
    Astroviruses are a leading cause of gastroenteritis in mammals and birds worldwide. Although historically thought to be species-specific, increasing evidence suggests that astroviruses may cross species barriers. In this report, we used enzyme-linked immunosorbent assays to screen sera from three distinct human cohorts involved in influenza studies in Memphis, TN or Chapel Hill, NC, and Midwestern poultry abattoir workers for antibodies to turkey astrovirus type 2 (TAstV-2). Surprisingly, 26% of one cohort’s population was TAstV-2 positive as compared to 0 and 8.9% in the other cohorts. This cohort was composed of people with exposure to turkeys in the Midwestern United States including abattoir workers, turkey growers, and non-occupationally exposed participants. The odds of testing positive for antibodies against turkey astrovirus among abattoir workers were approximately 3 times higher than the other groups. These studies suggest that people with contact to turkeys can develop serological responses to turkey astrovirus. Further work is needed to determine if these exposures result in virus replication and/or clinical disease

    Avian Influenza Viruses Infect Primary Human Bronchial Epithelial Cells Unconstrained by Sialic Acid α2,3 Residues

    Get PDF
    Avian influenza viruses (AIV) are an important emerging threat to public health. It is thought that sialic acid (sia) receptors are barriers in cross-species transmission where the binding preferences of AIV and human influenza viruses are sias α2,3 versus α2,6, respectively. In this study, we show that a normal fully differentiated, primary human bronchial epithelial cell model is readily infected by low pathogenic H5N1, H5N2 and H5N3 AIV, which primarily bind to sia α2,3 moieties, and replicate in these cells independent of specific sias on the cell surface. NHBE cells treated with neuraminidase prior to infection are infected by AIV despite removal of sia α2,3 moieties. Following AIV infection, higher levels of IP-10 and RANTES are secreted compared to human influenza virus infection, indicating differential chemokine expression patterns, a feature that may contribute to differences in disease pathogenesis between avian and human influenza virus infections in humans

    Detection of antibodies against Turkey astrovirus in humans.

    No full text
    Astroviruses are a leading cause of gastroenteritis in mammals and birds worldwide. Although historically thought to be species-specific, increasing evidence suggests that astroviruses may cross species barriers. In this report, we used enzyme-linked immunosorbent assays to screen sera from three distinct human cohorts involved in influenza studies in Memphis, TN or Chapel Hill, NC, and Midwestern poultry abattoir workers for antibodies to turkey astrovirus type 2 (TAstV-2). Surprisingly, 26% of one cohort's population was TAstV-2 positive as compared to 0 and 8.9% in the other cohorts. This cohort was composed of people with exposure to turkeys in the Midwestern United States including abattoir workers, turkey growers, and non-occupationally exposed participants. The odds of testing positive for antibodies against turkey astrovirus among abattoir workers were approximately 3 times higher than the other groups. These studies suggest that people with contact to turkeys can develop serological responses to turkey astrovirus. Further work is needed to determine if these exposures result in virus replication and/or clinical disease

    Novel Genotyping and Quantitative Analysis of Neuraminidase Inhibitor Resistance-Associated Mutations in Influenza A Viruses by Single-Nucleotide Polymorphism Analysis▿§

    No full text
    Neuraminidase (NA) inhibitors are among the first line of defense against influenza virus infection. With the increased worldwide use of the drugs, antiviral susceptibility surveillance is increasingly important for effective clinical management and for public health epidemiology. Effective monitoring requires effective resistance detection methods. We have developed and validated a novel genotyping method for rapid detection of established NA inhibitor resistance markers in influenza viruses by single nucleotide polymorphism (SNP) analysis. The multi- or monoplex SNP analysis based on single nucleotide extension assays was developed to detect NA mutations H275Y and I223R/V in pandemic H1N1 viruses, H275Y in seasonal H1N1 viruses, E119V and R292K in seasonal H3N2 viruses, and H275Y and N295S in H5N1 viruses. The SNP analysis demonstrated high sensitivity for low-content NA amplicons (0.1 to 1 ng/μl) and showed 100% accordant results against a panel of defined clinical isolates. The monoplex assays for the H275Y NA mutation allowed precise and accurate quantification of the proportions of wild-type and mutant genotypes in virus mixtures (5% to 10% discrimination), with results comparable to those of pyrosequencing. The SNP analysis revealed the lower growth fitness of an H275Y mutant compared to the wild-type pandemic H1N1 virus by quantitatively genotyping progeny viruses grown in normal human bronchial epithelial cells. This novel method offers high-throughput screening capacity, relatively low costs, and the wide availability of the necessary equipment, and thus it could provide a much-needed approach for genotypic screening of NA inhibitor resistance in influenza viruses
    corecore