32 research outputs found
Mapping local patterns of childhood overweight and wasting in low- and middle-income countries between 2000 and 2017
A double burden of malnutrition occurs when individuals, household members or communities experience both undernutrition and overweight. Here, we show geospatial estimates of overweight and wasting prevalence among children under 5 years of age in 105 low- and middle-income countries (LMICs) from 2000 to 2017 and aggregate these to policy-relevant administrative units. Wasting decreased overall across LMICs between 2000 and 2017, from 8.4 (62.3 (55.1�70.8) million) to 6.4 (58.3 (47.6�70.7) million), but is predicted to remain above the World Health Organization�s Global Nutrition Target of <5 in over half of LMICs by 2025. Prevalence of overweight increased from 5.2 (30 (22.8�38.5) million) in 2000 to 6.0 (55.5 (44.8�67.9) million) children aged under 5 years in 2017. Areas most affected by double burden of malnutrition were located in Indonesia, Thailand, southeastern China, Botswana, Cameroon and central Nigeria. Our estimates provide a new perspective to researchers, policy makers and public health agencies in their efforts to address this global childhood syndemic. © 2020, The Author(s)
Author Correction: Mapping local patterns of childhood overweight and wasting in low- and middle-income countries between 2000 and 2017 (Nature Medicine, (2020), 26, 5, (750-759), 10.1038/s41591-020-0807-6)
An amendment to this paper has been published and can be accessed via a link at the top of the paper. © 2020, The Author(s)
Author Correction: Mapping local patterns of childhood overweight and wasting in low- and middle-income countries between 2000 and 2017 (Nature Medicine, (2020), 26, 5, (750-759), 10.1038/s41591-020-0807-6)
An amendment to this paper has been published and can be accessed via a link at the top of the paper. © 2020, The Author(s)
Chondrichthyans as an umbrella species-complex for conserving South African biodiversity
Conservation surrogates, such as umbrella and flagship species, could help focus South Africa’s limited resources for research and management and enhance the conservation gains from marine protected areas (MPAs). Sharks, rays and chimaeras (Chondrichthyes), which are charismatic and ecologically diverse, are potential umbrella candidates, but tests of the ecological suitability of putative marine umbrella species are lacking. Using baited remote underwater video in and around two MPAs in the Western Cape Province, we assessed the potential of chondrichthyans as an umbrella species-complex by quantifying the relationships and co-occurrence patterns between chondrichthyan abundance and diversity and those of other taxa (primarily teleosts and crustaceans). Sites with abundant chondrichthyans, with catsharks or large sharks (>1 m total length), all had significantly greater abundance and diversity of these other taxa, and associations with species of commercial and conservation interest (e.g. roman Chrysoblephus laticeps). Endemic scyliorhinids (notably dark catshark Haploblepharus pictus) and the broadnose sevengill shark Notorynchus cepedianus also had many strong positive co-occurrences (28% and 21% of interactions, respectively). The puffadder catshark H. edwardsii had the highest centrality of any species, denoting its high connectedness to other taxa. Overall, chondrichthyans, especially the dark and puffadder catsharks and the broadnose sevengill shark, show strong potential as an umbrella species-complex in South Africa.
Keywords: baited remote underwater video, Chrysoblephus laticeps, co-occurrence, Jasus lalandii, marine protected areas, Notorynchus cepedianus, Scyliorhinidae, Western Cape 
A framework for mapping and monitoring human-ocean interactions in near real-time during COVID-19 and beyond
The human response to the COVID-19 pandemic set in motion an unprecedented shift in human activity with unknown long-term effects. The impacts in marine systems are expected to be highly dynamic at local and global scales. However, in comparison to terrestrial ecosystems, we are not well-prepared to document these changes in marine and coastal environments. The problems are two-fold: 1) manual and siloed data collection and processing, and 2) reliance on marine professionals for observation and analysis. These problems are relevant beyond the pandemic and are a barrier to understanding rapidly evolving blue economies, the impacts of climate change, and the many other changes our modern-day oceans are undergoing. The “Our Ocean in COVID-19″ project, which aims to track human-ocean interactions throughout the pandemic, uses the new eOceans platform (eOceans.app) to overcome these barriers. Working at local scales, a global network of ocean scientists and citizen scientists are collaborating to monitor the ocean in near real-time. The purpose of this paper is to bring this project to the attention of the marine conservation community, researchers, and the public wanting to track changes in their area. As our team continues to grow, this project will provide important baselines and temporal patterns for ocean conservation, policy, and innovation as society transitions towards a new normal. It may also provide a proof-of-concept for real-time, collaborative ocean monitoring that breaks down silos between academia, government, and at-sea stakeholders to create a stronger and more democratic blue economy with communities more resilient to ocean and global change