79 research outputs found

    Crystallization strategy for the glycoprotein-receptor complex between measles virus hemagglutinin and its cellular receptor SLAM.

    Get PDF
    Measles virus (MV), one of the most contagious agents, infects immune cells using the signaling lymphocyte activation molecule (SLAM) on the cell surface. A complex of SLAM and the attachment protein, hemagglutinin (MVH), has remained elusive due to the intrinsic handling difficulty including glycosylation. Furthermore, crystals obtained of this complex are either nondiffracting or poorly-diffracting. To solve this problem, we designed a systematic approach using a combination of the following techniques; (1) a transient expression system in HEK293SGnTI(-) cells, (2) lysine methylation, (3) structure-guided mutagenesis directed at better crystal packing, (4) Endo H treatment, (5) single-chain formation for stable complex, and (6) floating-drop vapor diffusion. Using our approach, the receptor-binding head domain of MV-H covalently fused with SLAM was successfully crystallized and diffraction was improved from 4.5 Å to a final resolution of 3.15 Å . These combinational methods would be useful as crystallization strategies for complexes of glycoproteins and their receptors.Measles virus (MV), one of the most contagious agents, infects immune cells using the signaling lymphocyte activation molecule (SLAM) on the cell surface. A complex of SLAM and the attachment protein, hemagglutinin (MVH), has remained elusive due to the intrinsic handling difficulty including glycosylation. Furthermore, crystals obtained of this complex are either nondiffracting or poorly-diffracting. To solve this problem, we designed a systematic approach using a combination of the following techniques; (1) a transient expression system in HEK293SGnTI(-) cells, (2) lysine methylation, (3) structure-guided mutagenesis directed at better crystal packing, (4) Endo H treatment, (5) single-chain formation for stable complex, and (6) floating-drop vapor diffusion. Using our approach, the receptor-binding head domain of MV-H covalently fused with SLAM was successfully crystallized and diffraction was improved from 4.5 Å to a final resolution of 3.15 Å . These combinational methods would be useful as crystallization strategies for complexes of glycoproteins and their receptors

    The C-terminal helix of ribosomal P stalk recognizes a hydropobic groove of elongation factor 2 in a novel fashion

    Get PDF
    Sherpa Romeo green journal. Open access article. Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0) appliesArchaea and eukaryotes have ribosomal P stalks composed of anchor protein P0 and aP1 homodimers (archaea) or P1•P2 heterodimers (eukaryotes). These P stalks recruit translational GTPases to the GTPase-associated center in ribosomes to provide energy during translation. The C-terminus of the P stalk is known to selectively recognize GTPases. Here we investigated the interaction between the P stalk and elongation factor 2 by determining the structures of P y ro c o c c u s h o r i ko s h i i EF-2 ( Pho EF2) in the Apo-form, GDP-form, GMPPCP-form (GTPform), and GMPPCP-form bound with 11 C-terminal residues of P1 (P1C11). Helical structured P1C11 binds to a hydrophobic groove between domain G and subdomain G of Pho EF-2, where is completely differentfromthatofaEF-1 in terms of both position and sequence, implying that such interaction characteristic may be requested by how GTPases perform their functions on the ribosome. Combining Pho EF2 P1-binding assays with a structural comparison of current Pho EF-2 structures and molecular dynamics model of a P1C11-bound GDP form, the conformational changes of the P1C11-binding groove in each form suggest that in response to the translation process, the groove has three states: closed, open, and release for recruiting and releasing GTPasesYe

    Structural and thermodynamic analyses reveal critical features of glycopeptide recognition by the human PILRα immune cell receptor

    Get PDF
    金沢大学医薬保健研究域薬学系Before entering host cells, herpes simplex virus-1 uses its envelope glycoprotein B to bind paired immunoglobulin-like type 2 receptor α (PILRα) on immune cells. PILRα belongs to the Siglec (sialic acid (SA)-binding immunoglobulin-like lectin)- like family, members of which bind SA. PILRα is the only Siglec member to recognize not only the sialylated O-linked sugar T antigen (sTn) but also its attached peptide region. We previously determined the crystal structure of PILRα complexed with the sTn-linked glycopeptide of glycoprotein B, revealing the simultaneous recognition of sTn and peptide by the receptor. However, the contribution of each glycopeptide component to PILRα binding was largely unclear. Here, we chemically synthesized glycopeptide derivatives and determined the thermodynamic parameters of their interaction with PILRα. We show that glycopeptides with different sugar units linking SA and peptides (i.e. "GlcNAc-Type" and "deoxy- GlcNAc-Type" glycopeptides) have lower affinity and more enthalpy-driven binding than the wild type (i.e. GalNAc-Type glycopeptide). The crystal structures of PILRα complexed with these glycopeptides highlighted the importance of stereochemical positioning of the O4 atom of the sugar moiety. These results provide insights both for understanding the unique O-glycosylated peptide recognition by the PILRα and for the rational design of herpes simplex virus-1 entry inhibitors. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc

    Crystallization and preliminary X-ray structure analysis of human ribosomal protein L30e

    Get PDF
    Many functions have been reported for the eukaryotic ribosomal protein L30e. L30e makes several inter-subunit and intra-subunit interactions with protein or RNA components of the 80S ribosome. Yeast L30e has been shown to bind to its own transcript to autoregulate expression at both the transcriptional and the translational levels. Furthermore, it has been reported that mammalian L30e is a component of the selenocysteine-incorporation machinery by binding to the selenocysteine-insertion sequence on mRNA. As high-resolution crystal structures of mammalian L30e are not available, the purification, crystallization and X-ray structure analysis of human L30e are presented here

    Crystal Structure of the Lamprey Variable Lymphocyte Receptor C Reveals an Unusual Feature in Its N-Terminal Capping Module

    Get PDF
    Jawless vertebrates represented by lampreys and hagfish use variable lymphocyte receptors (VLRs) as antigen receptors to mount adaptive immune responses. VLRs generate diversity that is comparable to immunoglobulins and T-cell receptors by a gene conversion-like mechanism, which is mediated by cytosine deaminases. Currently, three types of VLRs, VLRA, VLRB, and VLRC, have been identified in lampreys. Crystal structures of VLRA and VLRB in complex with antigens have been reported recently, but no structural information is available for VLRC. Here, we present the first crystal structure of VLRC from the Japanese lamprey (Lethenteron japonicum). Similar to VLRA and VLRB, VLRC forms a typical horseshoe-like solenoid structure with a variable concave surface. Strikingly, its N-terminal cap has a long loop with limited sequence variability that protrudes toward the concave surface, which is the putative antigen-binding surface. Furthermore, as predicted previously, its C-terminal cap lacks a highly variable protruding loop that plays an important role in antigen recognition by lamprey VLRA and VLRB. Recent work suggests that VLRC+ lymphocytes in jawless vertebrates might be akin to gamma delta T cells in jawed vertebrates. Structural features of lamprey VLRC described here suggest that it may recognize antigens in a unique manner

    Structural Characterization Reveals the Keratinolytic Activity of an Arthrobacter nicotinovorans Protease

    Get PDF
    Elevated cadmium (Cd) concentrations in fishery byproducts are an environmental concern, that might be reduced by enzymatic removal and adsorption of the contaminants during recycling the byproducts as animal food. We cloned the gene for Arthrobacter nicotinovorans serine protease (ANISEP), which was isolated from the hepatopancreas of the Japanese scallop (Patiopecten yessoensis) and has been found to be an effective enzyme for Cd(II) removal. The gene is 993 bp in length and encodes 330 amino acids, including the pre (1-30) and pro (31-111) sequences. The catalytic triad consists of His, Asp, and Ser. Sequence similarities indicate that ANISEP is a extracellular serine protease. X-ray crystallography revealed structural similarities between ANISEP and the trypsin-like serine protease NAALP from Nesterenkonia sp. Site-directed mutagenesis identified Ser171 as catalytic residue. The keratinolytic activity of ANISEP was 10-fold greater than that of trypsin. ANISEP digested Cd(II)-bound recombinant metallothionein MT-10a from Laternula elliptica, but did not release Cd. These results further suggest ANISEP is a trypsin-like serine protease that can release Cd from the Japanese scallop hepatopancreas because of its strong keratinolytic activity

    Structure analysis of geranyl pyrophosphate methyltransferase and the proposed reaction mechanism of SAM-dependent C-methylation

    Get PDF
    In the typical isoprenoid-biosynthesis pathway, condensation of the universal C5-unit precursors isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) occurs via the common intermediates prenyl pyrophosphates (C10-C20). The diversity of isoprenoids reflects differences in chain length, cyclization and further additional modification after cyclization. In contrast, the biosynthesis of 2-methylisonorneol (2-MIB), which is responsible for taste and odour problems in drinking water, is unique in that it primes the enzymatic methylation of geranyl pyrophosphate (GPP) before cyclization, which is catalyzed by an S-adenosyl-L-methionine-dependent methyltransferase (GPPMT). The substrate of GPPMT contains a nonconjugated olefin and the reaction mechanism is expected to be similar to that of the steroid methyltransferase (SMT) family. Here, structural analysis of GPPMT in complex with its cofactor and substrate revealed the mechanisms of substrate recognition and possible enzymatic reaction. Using the structures of these complexes, methyl-group transfer and the subsequent proton-abstraction mechanism are discussed. GPPMT and SMTs contain a conserved glutamate residue that is likely to play a role as a general base. Comparison with the reaction mechanism of the mycolic acid cyclopropane synthase (MACS) family also supports this result. This enzyme represented here is the first model of the enzymatic C-methylation of a nonconjugated olefin in the isoprenoid-biosynthesis pathway. In addition, an elaborate system to avoid methylation of incorrect substrates is proposed

    Neutron crystallographic study of heterotrimeric glutamine amidotransferase CAB

    Get PDF
    Heterotrimeric glutamine amidotransferase CAB (GatCAB) possesses an ammonia-self-sufficient mechanism in which ammonia is produced and used in the inner complex by GatA and GatB, respectively. The X-ray structure of GatCAB revealed that the two identified active sites of GatA and GatB are markedly distant, but are connected in the complex by a channel of 30 angstrom in length. In order to clarify whether ammonia is transferred through this channel in GatCAB by visualizing ammonia, neutron diffraction studies are indispensable. Here, GatCAB crystals were grown to approximate dimensions of 2.8 x 0.8 x 0.8 mm (a volume of 1.8 mm 3) with the aid of a polymer using microseeding and macroseeding processes. Monochromatic neutron diffraction data were collected using the neutron single-crystal diffractometer BIODIFF at the Heinz Maier-Leibnitz Zentrum, Germany. The GatCAB crystals belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 74.6, b = 94.5, c = 182.5 angstrom and with one GatCAB complex (molecular mass 119 kDa) in the asymmetric unit. This study represented a challenge in current neutron diffraction technology
    corecore