47 research outputs found

    Bone response to biosilicates® with different crystal phases

    Get PDF
    The aim of this study was to investigate the histological and histomorphometrical bone response to three Biosilicates with different crystal phases comparing them to Bioglass®45S5 implants used as control. Ceramic glass Biosilicate and Bioglass®45S5 implants were bilaterally inserted in rabbit femurs and harvested after 8 and 12 weeks. Histological examination did not revealed persistent inflammation or foreign body reaction at implantation sites. Bone and a layer of soft tissue were observed in close contact with the implant surfaces in the medullary canal. The connective tissue presented few elongated cells and collagen fibers located parallel to implant surface. Cortical portion after 8 weeks was the only area that demonstrated significant difference between all tested materials, with Biosilicate 1F and Biosilicate 2F presenting higher bone formation than Bioglass®45S5 and Biosilicate® vitreo (p=0.02). All other areas and periods were statistically non-significant (p>0.05). In conclusion, all tested materials were considered biocompatible, demonstrating surface bone formation and a satisfactory behavior at biological environment.O objetivo deste estudo foi investigar histologicamente e histomorfometricamente a resposta óssea a três diferentes fases cristalinas do Biosilicato®, comparando-os aos implantes de Bioglass®45S5 utilizados como controles. Implantes de cerâmicas de Biosilicato® e implantes de Bioglass®45S5 foram inseridos bilateralmente em fêmures de coelho e avaliações histológicas realizadas após 8 e 12 semanas. As avaliações histológicas não revelaram inflamação persistente ou reação de corpo estranho nos sítios de implantação dos biovidros. A formação de tecido ósseo pôde ser observada em maior quantidade na porção cortical, com tecido conjuntivo sendo observado em íntimo contato com as superfícies dos implantes apenas na porção medular. O tecido conjuntivo apresentou células com forma alongada e fibras de colágeno localizado paralelamente à superfície do implante. A porção cortical (após 8 semanas) foi a única área que demonstrou diferença significante entre os materiais estudados, com o Biosilicato 1F e o Biosilicato 2F demonstrando maior formação de tecido ósseo em contato com a superfície quando compardos aos implantes de Bioglass®45S5 e Biosilicato®vítreo (p=0,02). As outras áreas estudadas nos diferentes períodos não foram consideradas estatisticamente significantes (p>0,05). Pode-se concluir que todos os materiais testados foram considerados biocompatíveis, com formação óssea na superfície e comportamento em ambiente biológico satisfatório.The authors thank Mr. Sebastião Carlos Bianco for technical assistance and declare no conflict of interes

    A novel bioactive glass-ceramic for treating dentin hypersensitivity

    Get PDF
    Dentin hypersensitivity (DH) is a painful response to stimulus applied to the open dentinal tubules of a vital tooth. It's a common oral condition, however, without an ideal treatment available yet. This work evaluated in vitro the effect of micron-sized particles from a novel bioactive glass-ceramic (Biosilicate) in occluding open dentinal tubules. A dentin disc model was employed to observe comparatively, using scanning electron microscopy (SEM), dentinal tubule occlusion by different products and deposition of hydroxyl carbonate apatite (HCA) on dentin surface by Biosilicate, after a single application: G1 - Dentifrice with potassium nitrate and fluoride; G2 - Two-step calcium phosphate precipitation treatment; G3 - Water-free gel containing Biosilicate particles (1%); G4 - Biosilicate particles mixed with distilled water in a 1:10 ratio; all of them after 1, 12 and 24 hours of immersion in artificial saliva. Fourier transform infrared spectroscopy (FTIR) was performed to detect HCA formation on dentin discs filled with Biosilicate after 2 minutes, 30 minutes and 12 hours of immersion in artificial saliva. SEM showed a layer of HCA formed on dentin surface after 24 hours by G4. G1, G2 and G3 promoted not total occlusion of open dentinal tubules after 24 hours. FTIR showed HCA precipitation on the dentin surface induced by Biosilicate after 30 minutes. The micron-sized particles from the bioactive glass-ceramic thus were able to induce HCA deposition in open dentinal tubules in vitro. This finding suggests that Biosilicate may provide a new option for treating DH.FAPESPCNP

    SEM and AFM characterization of surface of two RMGICs for degradation before and after modification with bioactive glass ceramic

    Get PDF
    “This is an Accepted Manuscript of an article published by Taylor & Francis Group in Journal of Adhesion Science and Technology on 09/12/2015, available online: http://www.tandfonline.com/10.1080/01694243.2015.1115603."Objectives: The aim of this study was to evaluate the effect of bioactive glass–ceramic particles (Biosilicate®) addition on surface nanoroughness and topography of Resin-modified glass ionomer cements (RMGICs).Methods: Experimental materials were made by incorporating 2 wt% of Biosilicate® into Fuji II LC® (FL) and Vitremer® (VT) powders. Disks of RMGICs (with and without Biosilicate®) measuring 0.5 cm (diameter) × 0.5 mm (thickness) were fabricated and polished. Samples were stored at 37 °C in dry or immersed in distilled water for 30 days. Digital images (20 × 20 μm) from the surfaces were obtained by means of an atomic force microscopy. Three images were acquired for each sample, and four nanoroughness measurements were performed in each image. Nanoroughness (Ra, nm) was assessed by Nanoscope Software V7. Data were analyzed with ANOVA and Student–Newman–Keuls multiple comparisons (p < 0.05). SEM images were obtained for surface topography analysis.Results: FL was significantly rougher than VT (p < 0.05) in wet and dry conditions. The addition of Biosilicate® increased the surface roughness in VT and decreased in FL, regardless of the storage media (p ≤ 0.05). No differences existed between materials and storage conditions after Biosilicate® addition. Significance: The Biosilicate® particles addition produced changes on the surface nanoroughness of the RMGICs. These changes depended on the particles size of the original cements in dry conditions. In water storage, dissolution of the Biosilicate® particles, a silica-rich gel formation, and a hydroxyl carbonate apatite precipitation on the surface of the materials changed the nanoroughness surface. FL was the roughest in both conditions.Significance: The Biosilicate® particles addition produced changes on the surface nanoroughness of the RMGICs. These changes depended on the particles size of the original cements in dry conditions. In water storage, dissolution of the Biosilicate® particles, a silica-rich gel formation, and a hydroxyl carbonate apatite precipitation on the surface of the materials changed the nanoroughness surface. FL was the roughest in both conditions.MINECO/FEDERMAT2014-52036-P
    corecore