3,726 research outputs found

    Response of an atomic Bose-Einstein condensate to a rotating elliptical trap

    Full text link
    We investigate numerically the response of an atomic Bose-Einstein condensate to a weakly-elliptical rotating trap over a large range of rotation frequencies. We analyse the quadrupolar shape oscillation excited by rotation, and discriminate between its stable and unstable regimes. In the latter case, where a vortex lattice forms, we compare with experimental observations and find good agreement. By examining the role of thermal atoms in the process, we infer that the process is temperature-independent, and show how terminating the rotation gives control over the number of vortices in the lattice. We also study the case of critical rotation at the trap frequency, and observe large centre-of-mass oscillations of the condensate.Comment: 14 pages, 8 figure

    Renormalization Group and Infinite Algebraic Structure in D-Dimensional Conformal Field Theory

    Full text link
    We consider scalar field theory in the D-dimensional space with nontrivial metric and local action functional of most general form. It is possible to construct for this model a generalization of renormalization procedure and RG-equations. In the fixed point the diffeomorphism and Weyl transformations generate an infinite algebraic structure of D-Dimensional conformal field theory models. The Wilson expansion and crossing symmetry enable to obtain sum rules for dimensions of composite operators and Wilson coefficients.Comment: 16 page

    Are the school prevention programmes - aimed at de-normalizing smoking among youths - beneficial in the long term? An example from the Smoke Free Class Competition in Italy

    Get PDF
    Tobacco smoking by young people is of great concern because it usually leads to regular smoking, nicotine addiction and quitting difficulties. Young people "hooked" by tobacco maintain the profits of the tobacco industry by replacing smokers who quit or die. If new generations could be tobacco-free, as supported by tobacco endgame strategies, the tobacco epidemic could end within decades. Smoking prevention programmes for teens are offered by schools with the aim to prevent or delay smoking onset. Among these, the Smoke Free Class Competition (SFC) was widely implemented in Europe. Its effectiveness yielded conflicting results, but it was only evaluated at short/medium term (6 - 18 months). The aim of this study is to evaluate its effectiveness after a longer follow-up (3 to 5 years) in order to allow enough time for the maturing of the students and the internalization of the experience and its contents. Fifteen classes were randomly sampled from two Italian high schools of Bologna province that regularly offered the SFC to first year students; 382 students (174 participating in the SFC and 208 controls) were retrospectively followed-up and provided their "smoking histories". At the end of their last year of school (after 5 years from the SFC), the percentage of students who stated that they were regular smokers was lower among the SFC students than in controls: 13.5% vs 32.9% (p=0.03). From the students' "smoking histories", statistically significant protective ORs were observed for SFC students at the end of 1st and 5th year: 0.42 (95% CI 0.19-0.93) and 0.32 (95% CI 0.11-0.91) respectively. Absence of smokers in the family was also a strongly statistically significant factor associated with being a non-smoker student. These results suggest that SFC may have a positive impact on lowering the prevalence of smoking in the long term (5 years)

    On the effective conductivity of composite materials

    Full text link
    A composite conductive material, which consists of fibers of a high conductivity in a matrix of low conductivity, is discussed. The effective conductivity of the system considered is calculated in Clausius-Mossotti approximation. Obtained relationships can be used to calculate the conductivity of a matrix, using experimentally measured parameters. Electric fields in the matrix and the inclusions are calculated. It is shown that the field in a low-conductivity matrix can be much higher than the external applied one.Comment: Russian version is include

    Quantum Magnetic Algebra and Magnetic Curvature

    Full text link
    The symplectic geometry of the phase space associated with a charged particle is determined by the addition of the Faraday 2-form to the standard structure on the Euclidean phase space. In this paper we describe the corresponding algebra of Weyl-symmetrized functions in coordinate and momentum operators satisfying nonlinear commutation relations. The multiplication in this algebra generates an associative product of functions on the phase space. This product is given by an integral kernel whose phase is the symplectic area of a groupoid-consistent membrane. A symplectic phase space connection with non-trivial curvature is extracted from the magnetic reflections associated with the Stratonovich quantizer. Zero and constant curvature cases are considered as examples. The quantization with both static and time dependent electromagnetic fields is obtained. The expansion of the product by the deformation parameter, written in the covariant form, is compared with the known deformation quantization formulas.Comment: 23 page

    Symplectic areas, quantization, and dynamics in electromagnetic fields

    Get PDF
    A gauge invariant quantization in a closed integral form is developed over a linear phase space endowed with an inhomogeneous Faraday electromagnetic tensor. An analog of the Groenewold product formula (corresponding to Weyl ordering) is obtained via a membrane magnetic area, and extended to the product of N symbols. The problem of ordering in quantization is related to different configurations of membranes: a choice of configuration determines a phase factor that fixes the ordering and controls a symplectic groupoid structure on the secondary phase space. A gauge invariant solution of the quantum evolution problem for a charged particle in an electromagnetic field is represented in an exact continual form and in the semiclassical approximation via the area of dynamical membranes.Comment: 39 pages, 17 figure

    Decoupling a Cooper-pair box to enhance the lifetime to 0.2 ms

    Full text link
    We present a circuit QED experiment in which a separate transmission line is used to address a quasi-lumped element superconducting microwave resonator which is in turn coupled to an Al/AlOx_{x}/Al Cooper-pair box (CPB) charge qubit. In our measurements we find a strong correlation between the measured lifetime of the CPB and the coupling between the qubit and the transmission line. By monitoring perturbations of the resonator's 5.44 GHz resonant frequency, we have measured the spectrum, lifetime (T1T_{1}), Rabi, and Ramsey oscillations of the CPB at the charge degeneracy point while the CPB was detuned by up to 2.5 GHz . We find a maximum lifetime of the CPB was T1=200 μT_{1} = 200\ \mus for f=4f = 4 to 4.5 GHz. Our measured T1T_{1}'s are consistent with loss due to coupling to the transmission line, spurious microwave circuit resonances, and a background decay rate on the order of 5×1035\times 10^{3} s1^{-1} of unknown origin, implying that the loss tangent in the AlOx_{x} junction barrier must be less than about 4×1084\times 10^{-8} at 4.5 GHz, about 4 orders of magnitude less than reported in larger area Al/AlOx_{x}/Al tunnel junctions

    Heisenberg Evolution WKB and Symplectic Area Phases

    Full text link
    The Schrodinger and Heisenberg evolution operators are represented in quantum phase space by their Weyl symbols. Their semiclassical approximations are constructed in the short and long time regimes. For both evolution problems, the WKB representation is purely geometrical: the amplitudes are functions of a Poisson bracket and the phase is the symplectic area of a region in phase space bounded by trajectories and chords. A unified approach to the Schrodinger and Heisenberg semiclassical evolutions is developed by introducing an extended phase space. In this setting Maslov's pseudodifferential operator version of WKB analysis applies and represents these two problems via a common higher dimensional Schrodinger evolution, but with different extended Hamiltonians. The evolution of a Lagrangian manifold in the extended phase space, defined by initial data, controls the phase, amplitude and caustic behavior. The symplectic area phases arise as a solution of a boundary condition problem. Various applications and examples are considered.Comment: 32 pages, 7 figure
    corecore