8,683 research outputs found

    Wetting on Lines and Lattices of Cylinders

    Full text link
    This paper discusses wetting and capillary condensation transitions on a line and a rectangular array of cylinders using an interface potential formalism. For a line of cylinders, there is a capillary condensation transition followed by complete wetting if the cylinders are sufficiently close together. Both transitions disappear as the cylinder separation is increased. The dependence of the wetting phase diagram of a rectangular array of cylinders is discussed as a function of the chemical potential, substrate--fluid interaction strength and surface tension.Comment: 17 pages in total: 11 pages of Latex document and 6 pages of figures, Latex Version 2.09, OUTP-93-40

    Performance of a 1.15-pressure-ratio axial-flow fan stage with a blade tip solidity of 0.5

    Get PDF
    The overall and blade-element performance of a low-solidity, low-pressure-ratio, low-tip-speed fan stage is presented over the stable operating range at rotative speeds from 90 to 120 percent of design speed. At design speed a stage peak efficiency of 0.836 was obtained at a weight flow of 30.27 kilograms per second and a pressure ratio of 1.111. The pressure ratio was less than design pressure ratio, and the design energy input into the rotor was not achieved. A mismatch of the rotor and stator blade elements resulted due to the lower than design pressure ratio of the rotor

    Chiral Symmetry Breaking and the Dirac Spectrum at Nonzero Chemical Potential

    Full text link
    The relation between the spectral density of the QCD Dirac operator at nonzero baryon chemical potential and the chiral condensate is investigated. We use the analytical result for the eigenvalue density in the microscopic regime which shows oscillations with a period that scales as 1/V and an amplitude that diverges exponentially with the volume V=L4V=L^4. We find that the discontinuity of the chiral condensate is due to the whole oscillating region rather than to an accumulation of eigenvalues at the origin. These results also extend beyond the microscopic regime to chemical potentials μ∼1/L\mu \sim 1/L.Comment: 4 pages, 1 figur

    Atmospheric turbulence forecasting with a general circulation model for Cerro Paranal

    Get PDF
    In addition to astro-meteorological parameters, such as seeing, coherence time, and isoplanatic angle, the vertical profile of the Earth’s atmospheric turbulence strength and velocity is important for instrument design, performance validation and monitoring, and observation scheduling and management. Here we compare these astro-meteorological parameters as well as the vertical profile itself from a forecast model based on a general circulation model from the European Centre for Median range Weather Forecasts and the stereo-SCIDAR, a high-sensitivity turbulence profiling instrument in regular operation at Paranal, Chile. The model is fast to process as no spatial nesting or data manipulation is performed. This speed enables the model to be reactive based on the most up to date forecasts. We find that the model is statistically consistent with measurements from stereo-SCIDAR. The correlation of the median turbulence profile from the model and the measurement is 0.98. We also find that the distributions of astro-meteorological parameters are consistent. We compare contemporaneous measurements and show that the free atmosphere seeing, isoplanatic angle, and coherence time have correlation values of 0.64, 0.40, and 0.63, respectively. We show and compare the profile sequences from a large number of trial nights. We see that the model is able to forecast the evolution of dominating features. In addition to smart scheduling, ensuring that the most sensitive astronomical observations are scheduled for the optimum time, this model could enable remote site characterization using a large archive of weather forecasts and could be used to optimize the performance of wide-field adaptive optics system
    • …
    corecore