41 research outputs found

    Use of Cellulosic Materials as Dye Adsorbents — A Prospective Study

    Get PDF
    Cellulose is the most abundant biopolymer of nature, and it is widely used in the synthesis of new materials as well as in the adsorption of dye. This study reports a literature review (articles) and technology review (patents) about publications and product invention, which contain information on the use of cellulose on the adsorption of dyes in the period 2004–2014. For this work, research database and keywords were used to find articles and patents related to the subject under review. Specific words were used to find articles and patents related to the subject under review. After a demanding research, 1 patent and 23 articles that contain the words “cellulose,” “dye,” and “adsorption or sorption” in their titles were assessed, and annual evolution studies were performed for publications and countries that publish more

    Chemical Functionalization of Cellulosic Materials — Main Reactions and Applications in the Contaminants Removal of Aqueous Medium

    Get PDF
    The cellulose is the most abundant biopolymer in the world and presents a higher chemical variability for presence of several hydroxyl groups. These hydroxyl groups allow surface modification of biomaterials, with insertion of several chemical groups which change cellulose characteristics. This natural biopolymer and its derivatives have been used a lot as adsorbent, from several contaminants of aqueous medium due to biocompatibility, chemical degradability, and variability. Therefore, this chapter has the objective to review the literature about several cellulose surfaces or cellulosic material (incorporation of carboxymethyl, phosphorus, carboxyl, amines, and sulfur), presenting the main characteristics of reactions and showing its adsorption in application of aqueous medium (metals, dyes, and drugs), locating the main interactions between biomaterial/contaminant

    Biopolymeric materials used as nonviral vectors: a review

    Get PDF
    Bacterial transformation and gene transfection can be understood as being the results of introducing specific genetic material into cells, resulting in gene expression, and adding a new genetic trait to the host cell. Many studies have been carried out to investigate different types of lipids and cationic polymers as promising nonviral vectors for DNA transfer. The present study aimed to carry out a systematic review on the use of biopolymeric materials as nonviral vectors. The methodology was carried out based on searches of scientific articles and applications for patents published or deposited from 2006 to 2020 in different databases for patents (EPO, USPTO, and INPI) and articles (Scopus, Web of Science, and Scielo). The results showed that there are some deposits of patents regarding the use of chitosan as a gene carrier. The 16 analyzed articles allowed us to infer that the use of biopolymers as nonviral vectors is limited due to the low diversity of biopolymers used for these purposes. It was also observed that the use of different materials as nonviral vectors is based on chemical structure modifications of the material, mainly by the addition of cationic groups. Thus, the use of biopolymers as nonviral vectors is still limited to only a few polysaccharide types, emphasizing the need for further studies involving the use of different biopolymers in processes of gene transfer.info:eu-repo/semantics/publishedVersio

    Effect of cerium-containing hydroxyapatite in bone repair in female rats with osteoporosis induced by ovariectomy

    Get PDF
    Osteoporosis is a public health problem, with bone loss being the main consequence. Hydroxyapatite (HA) has been largely used as a bioceramic to stimulate bone growth. In our work, a cerium-containing HA (Ce-HA) has been proposed and its effects on the antimicrobial and bone-inducing properties were investigated. The synthesis of the materials occurred by the suspension–precipitation method (SPM). The XRD (X-ray Diffraction) confirmed the crystalline phase, and the Rietveld refinement confirmed the crystallization of HA and Ce-HA in a hexagonal crystal structure in agreement with ICSD n◩ 26205. Characterizations by FT-IR (Fourier Transform Infrared Spectroscopy), XPS (X-ray Photoemission Spectroscopy), and FESEM-EDS (Field Emission Scanning Electron Microscope-Energy Dispersive X-ray Spectroscopy) confirmed the presence of cerium (Ce3+ and Ce4+ ). The antibacterial activity of Has was evaluated against Staphylococcus aureus 25,923 and Escherichia coli 25,922 strains, which revealed that the material has antimicrobial properties and the cytotoxicity assay indicated that Ce-containing HA was classified as non-toxic. The effects of Ce-HA on bone repair, after application in bone defects in the tibia of female rats with osteoporosis induced by ovariectomy (OVX), were evaluated. After 15 and 30 days of implantation, the samples were analyzed by Raman, histology and X-ray microtomography. The results showed that the animals that had the induced bone defects filled with the Ce-HA materials had more expressive bone neoformation than the control group.info:eu-repo/semantics/publishedVersio

    Hybrid Pigments from Bixin Dye and Inorganic Matrices

    No full text
    Annatto dye is a natural organic dye belonging to carotenoids, whose main components are bixin and norbixin. Due to its low stability, it is convenient to protect the dye molecules with other materials. The use of clay minerals is an alternative, which are phyllosilicates with attractive physico-chemical properties, such as high specific surface area, cation exchange capacity, mechanical/chemical stability and non-toxicity. The main purpose of this work was to develop hybrid materials, using annatto dye and clay mineral modified with different inorganic cations, and then, to evaluate the stability of the new pigments. The process of preparing the modified clay minerals involved mixing a synthetic montmorillonite in solutions containing the precursor salts of the metal cations. Subsequently, the dye was dissolved in a solution containing water and alcohol, followed by filtration and mixed with the modified clay, giving rise to the hybrid pigments. Through the characterizations, it was noted that a variety of colors were obtained, and the sample containing aluminum was the one that most adsorbed the dye and showed a significant increase in stability at high temperatures. This hybrid material was better to dye than its pure form. Therefore, the bixin/montmorillonite pigments are promising for replacing artificial colors in practical applications such as in the cosmetics, food or pharmaceutical industries

    Facile Synthesis of Ni-Doped ZnO Nanoparticles Using Cashew Gum: Investigation of the Structural, Optical, and Photocatalytic Properties

    No full text
    This work adopted a green synthesis route using cashew tree gum as a mediating agent to obtain Ni-doped ZnO nanoparticles through the sol–gel method. Structural analysis confirmed the formation of the hexagonal wurtzite phase and distortions in the crystal lattice due to the inclusion of Ni cations, which increased the average crystallite size from 61.9 nm to 81.6 nm. These distortions resulted in the growth of point defects in the structure, which influenced the samples’ optical properties, causing slight reductions in the band gaps and significant increases in the Urbach energy. The fitting of the photoluminescence spectra confirmed an increase in the concentration of zinc vacancy defects (VZn) and monovacancies (Vo) as Zn cations were replaced by Ni cations in the ZnO structure. The percentage of VZn defects for the pure compound was 11%, increasing to 40% and 47% for the samples doped with 1% and 3% of Ni cations, respectively. In contrast, the highest percentage of VO defects is recorded for the material with the lowest Ni ions concentration, comprising about 60%. The influence of dopant concentration was also reflected in the photocatalytic performance. Among the samples tested, the Zn0.99Ni0.01O compound presented the best result in MB degradation, reaching an efficiency of 98.4%. Thus, the recovered material underwent reuse tests, revealing an efficiency of 98.2% in dye degradation, confirming the stability of the photocatalyst. Furthermore, the use of different inhibitors indicated that ‱OH radicals are the main ones involved in removing the pollutant. This work is valuable because it presents an ecological synthesis using cashew gum, a natural polysaccharide that has been little explored in the literature

    The Role of Clay Mineral-Derived Photocatalysts in Insights of Remediation

    No full text
    Clay minerals have advantages to be used as supports for obtaining new catalysts, in which colloidal and surface characteristics play a significant role. In addition to their favorable physicochemical properties, clay minerals allow different modifications to form structures with broad photochemical capabilities. This review collects pertinent works of semiconductor nanoparticles loaded onto clay minerals and their potential application in hazardous contaminant photodegradation. Web of Science, Scopus, and Science Direct were used for bibliographic research databases. The sol–gel method is the most frequent technique used to obtain semiconductors immobilized onto clay minerals, but other methods have also proven helpful in forming these structures. Thence, the types of synthesis and different parameters that influence their photocatalytic efficiency will be discussed. Pillared clay minerals have been applied to photo-oxidation reactions involving photodecomposition of environmental contaminants. The homogeneous dispersion of nanoparticles on the surface of clay minerals, reduction of fine particles, its non-toxicity, and the generation of a suitable suspension for photocatalytic reactions may be the main characteristics of these inorganic supports to obtain successful photoactive materials

    The Role of Clay Mineral-Derived Photocatalysts in Insights of Remediation

    No full text
    Clay minerals have advantages to be used as supports for obtaining new catalysts, in which colloidal and surface characteristics play a significant role. In addition to their favorable physicochemical properties, clay minerals allow different modifications to form structures with broad photochemical capabilities. This review collects pertinent works of semiconductor nanoparticles loaded onto clay minerals and their potential application in hazardous contaminant photodegradation. Web of Science, Scopus, and Science Direct were used for bibliographic research databases. The sol–gel method is the most frequent technique used to obtain semiconductors immobilized onto clay minerals, but other methods have also proven helpful in forming these structures. Thence, the types of synthesis and different parameters that influence their photocatalytic efficiency will be discussed. Pillared clay minerals have been applied to photo-oxidation reactions involving photodecomposition of environmental contaminants. The homogeneous dispersion of nanoparticles on the surface of clay minerals, reduction of fine particles, its non-toxicity, and the generation of a suitable suspension for photocatalytic reactions may be the main characteristics of these inorganic supports to obtain successful photoactive materials

    Phosphated Cellulose as an Efficient Biomaterial for Aqueous Drug Ranitidine Removal

    No full text
    Crystalline cellulose chemically modified through a reaction with sodium trimetaphosphate (STMP) in an acidic or basic condition yielded Cel-P4 and Cel-P10. These phosphated solids were characterized by elemental analysis, X-ray diffraction (XRD), infrared (IR) spectroscopy, scanning electron microscopy (SEM), nuclear magnetic resonance (NMR) at the solid state for phosphorus nucleus and dispersive X-ray energy. The elemental results demonstrated that the phosphorylation reaction was more efficient in the basic medium, as supported by the amount of phosphorous content. The synthesized biomaterials decreased in crystallinity in comparison to the precursor cellulose, with an increase in roughness and present two distinct phosphorus environments in the formed structure. The phosphated cellulose in an alkaline condition was applied to sorb the drug ranitidine. This process was applied in varying pH, time, temperature and concentration. The best sorption kinetic model to fit the experimental data was the pseudo-second-order with a coefficient correlation of 0.8976, and the Langmuir isotherm model was the most adjusted to the variation in concentration. The efficient drug sorption has a low dependence on temperature, with maximum values of 85.0, 82.0 mg and 85.7 mg·g−1 for Cel-P10 at 298, 308 and 318 K, respectively. The best sorption occurred at pH = 6 with a saturation time of 210 min
    corecore