16 research outputs found

    Structure and Dynamics of Plumes Generated by Small Rivers

    Get PDF
    The total share of small rivers in the influxes of fluvial water and suspended matter to the world ocean is estimated at between 25 and 40%. On a regional scale, this contribution can be even more significant for many coastal regions. In this chapter, we show that dynamics of small river plumes is significantly different from that of plumes generated by large rivers. Spatial structure of small plumes is generally characterized by sharper horizontal and vertical gradients. As a result, small plumes exhibit more energetic temporal variability in response to external forcing. In this chapter, we address several dynamical features typical for small plumes. We describe and discuss the response of small plumes to wind forcing and river discharge variability, the interaction between neighboring small plumes, and the generation of high-frequency internal waves in coastal ocean by small rivers. We also substantiate the Lagrangian approach to numerical modeling of small river plumes

    Spreading and accumulation of river-borne sediments in the coastal ocean after the environmental disaster at the Doce River in Brazil

    Get PDF
    This study is focused on the fate of a large volume of mine slurry discharged from the Doce River (DR) to the coastal ocean after the worst environmental disaster in Brazilian which occurred in November 2015. We used Eulerian (ROMS) and Lagrangian (STRiPE) numerical models, as well as satellite remote sensing data, to study the spreading and seafloor accumulation of fine river-borne sediments during the initial six months following the disaster. We show that the regions of intense sediment accumulation were determined by spreading patterns of the surface-advected DR plume. The river discharge rate governed the plume surface area, while its position depended on local wind forcing conditions. The spreading of sediments carried by the DR plume was dominated by southward transport caused by prevailing upwelling-favorable northeasterly winds during the study period. Under high discharge conditions, river-borne sediments were transported over 100 km southward from the DR mouth and reached the outer shelf. In contrast, sediments were arrested near the mouth during drought periods and remained on the inner shelf. As a result, fine river-borne sediments accumulated on the seafloor, mainly in the large shallow shelf area southward from the DR mouth. Conversely, only a small fraction of residue was deposited northward. Thus, the Environmental Protection Area (EPA) of Costa das Algas, located 40 km southward from the DR, potentially exhibited more susceptibility to sediment arrival. On the other hand, their influence on Abrolhos Marine National Park, located 200 km northeastward from the DR mouth, was presumably minimal

    Spreading and accumulation of river-borne sediments in the coastal ocean after the environmental disaster at the Doce River in Brazil

    Get PDF
    This study is focused on the fate of a large volume of mine slurry discharged from the Doce River (DR) to the coastal ocean after the worst environmental disaster in Brazilian which occurred in November 2015. We used Eulerian (ROMS) and Lagrangian (STRiPE) numerical models, as well as satellite remote sensing data, to study the spreading and seafloor accumulation of fine river-borne sediments during the initial six months following the disaster. We show that the regions of intense sediment accumulation were determined by spreading patterns of the surface-advected DR plume. The river discharge rate governed the plume surface area, while its position depended on local wind forcing conditions. The spreading of sediments carried by the DR plume was dominated by southward transport caused by prevailing upwelling-favorable northeasterly winds during the study period. Under high discharge conditions, river-borne sediments were transported over 100 km southward from the DR mouth and reached the outer shelf. In contrast, sediments were arrested near the mouth during drought periods and remained on the inner shelf. As a result, fine river-borne sediments accumulated on the seafloor, mainly in the large shallow shelf area southward from the DR mouth. Conversely, only a small fraction of residue was deposited northward. Thus, the Environmental Protection Area (EPA) of Costa das Algas, located 40 km southward from the DR, potentially exhibited more susceptibility to sediment arrival. On the other hand, their influence on Abrolhos Marine National Park, located 200 km northeastward from the DR mouth, was presumably minimal

    Biogeochemical structure of the Laptev Sea in 2015-2020 associated with the River Lena plume

    Get PDF
    The discharge of rivers and the subsequent dispersion of their plumes play a pivotal role in the biogeochemical cycling of the Arctic Ocean. Based on the data collected during annual transects conducted in the autumn period (September-October) from 2015-2020, this study explores the effect of River Lena plume dispersion on the seasonal and interannual changes in the hydrophysical and biogeochemical structure of the southeastern Laptev Sea. The temperature-salinity relationship (T-S), Redfield ratio and multiparameter cluster analysis were used to investigate variations in the water mass structure along the transect. The results revealed that the plume’s interannual and seasonal spreading patterns play a crucial role in regulating the local physical, biogeochemical, and biological processes in the southern Laptev Sea. During September-October, the hydrochemical water mass structure along the transects shifted from highly stratified to unstratified as the plume’s mixing intensity increased. Anomalous hydrochemical distributions were observed due to coastal upwelling, which was primarily characterized by high total alkalinity and nitrate levels, and low organic phosphorus, nitrite, and ammonia levels in the seawater. Wind and cold weather conditions drive deep vertical mixing of seawater, causing the resuspension of bottom sediment and the subsequent enrichment of bottom water by nutrients. Multi-parameter cluster analysis is used to describe the details of water mass structures in the highly dynamic southern Laptev Sea, with water mass structures typically undergoing significant changes within two weeks between September and October. The migration and transformation of water masses throughout the seasons are influenced by the volume of river discharge, fall-winter cooling, and atmospheric circulation patterns. Furthermore, the general atmospheric circulation is confirmed to be the primary cause of the interannual variation in the spread of the Lena River plume over the southeast Laptev Sea.publishedVersio

    Nitrous Oxide Dynamics in the Siberian Arctic Ocean and Vulnerability to Climate Change

    Get PDF
    Nitrous oxide (N2O) is a strong greenhouse gas and stratospheric ozone-depleting substance. Around 20% of global emissions stem from the ocean, but current estimates and future projections are uncertain due to poor spatial coverage over large areas and limited understanding of drivers of N2O dynamics. Here, we focus on the extensive and particularly data-lean Arctic Ocean shelves north of Siberia that experience rapid warming and increasing input of land-derived nitrogen with permafrost thaw. We combine water column N2O measurements from two expeditions with on-board incubation of intact sediment cores to assess N2O dynamics and the impact of land-derived nitrogen. Elevated nitrogen concentrations in water column and sediments were observed near large river mouths. Concentrations of N2O were only weakly correlated with dissolved nitrogen and turbidity, reflecting particulate matter from rivers and coastal erosion, and correlations varied between river plumes. Surface water N2O concentrations were on average close to equilibrium with the atmosphere, but varied widely (N2O saturation 38%–180%), indicating strong local N2O sources and sinks. Water column N2O profiles and low sediment-water N2O fluxes do not support strong sedimentary sources or sinks. We suggest that N2O dynamics in the region are influenced by water column N2O consumption under aerobic conditions or in anoxic microsites of particles, and possibly also by water column N2O production. Changes in biogeochemical and physical conditions will likely alter N2O dynamics in the Siberian Arctic Ocean over the coming decades, in addition to reduced N2O solubility in a warmer ocean.publishedVersio

    Biogeochemical structure of the Laptev Sea in 2015-2020 associated with the River Lena plume

    Get PDF
    The discharge of rivers and the subsequent dispersion of their plumes play a pivotal role in the biogeochemical cycling of the Arctic Ocean. Based on the data collected during annual transects conducted in the autumn period (September-October) from 2015-2020, this study explores the effect of River Lena plume dispersion on the seasonal and interannual changes in the hydrophysical and biogeochemical structure of the southeastern Laptev Sea. The temperature-salinity relationship (T-S), Redfield ratio and multiparameter cluster analysis were used to investigate variations in the water mass structure along the transect. The results revealed that the plume’s interannual and seasonal spreading patterns play a crucial role in regulating the local physical, biogeochemical, and biological processes in the southern Laptev Sea. During September-October, the hydrochemical water mass structure along the transects shifted from highly stratified to unstratified as the plume’s mixing intensity increased. Anomalous hydrochemical distributions were observed due to coastal upwelling, which was primarily characterized by high total alkalinity and nitrate levels, and low organic phosphorus, nitrite, and ammonia levels in the seawater. Wind and cold weather conditions drive deep vertical mixing of seawater, causing the resuspension of bottom sediment and the subsequent enrichment of bottom water by nutrients. Multi-parameter cluster analysis is used to describe the details of water mass structures in the highly dynamic southern Laptev Sea, with water mass structures typically undergoing significant changes within two weeks between September and October. The migration and transformation of water masses throughout the seasons are influenced by the volume of river discharge, fall-winter cooling, and atmospheric circulation patterns. Furthermore, the general atmospheric circulation is confirmed to be the primary cause of the interannual variation in the spread of the Lena River plume over the southeast Laptev Sea

    Large River Plumes Detection by Satellite Altimetry: Case Study of the Ob–Yenisei Plume

    No full text
    Satellite altimetry is an efficient instrument for detection dynamical processes in the World Ocean, including reconstruction of geostrophic currents and tracking of mesoscale eddies. Satellite altimetry has the potential to detect large river plumes, which have reduced salinity and, therefore, elevated surface level as compared to surrounding saline sea. In this study, we analyze applicability of satellite altimetry for detection of the Ob–Yenisei plume in the Kara Sea, which is among the largest river plumes in the World Ocean. Based on the extensive in situ data collected at the study area during oceanographic surveys in 2007–2019, we analyze the accuracy and efficiency of satellite altimetry in reproducing, first, the outer boundary of the plume and, second, the internal structure of the plume. We reveal that the value of positive level anomaly within the Ob–Yenisei plume strongly depends on the vertical plume structure and is prone to significant synoptic and seasonal variability due to wind forcing and mixing of the plume with subjacent sea. As a result, despite generally high statistical correlation between the ADT and surface salinity, straightforward usage of ADT for detection of the river plume is incorrect and produces misleading results. Satellite altimetry could provide correct information about spatial extents and shape of the Ob–Yenisei plume only if it is validated by synchronous in situ measurements

    Large River Plumes Detection by Satellite Altimetry: Case Study of the Ob–Yenisei Plume

    No full text
    Satellite altimetry is an efficient instrument for detection dynamical processes in the World Ocean, including reconstruction of geostrophic currents and tracking of mesoscale eddies. Satellite altimetry has the potential to detect large river plumes, which have reduced salinity and, therefore, elevated surface level as compared to surrounding saline sea. In this study, we analyze applicability of satellite altimetry for detection of the Ob–Yenisei plume in the Kara Sea, which is among the largest river plumes in the World Ocean. Based on the extensive in situ data collected at the study area during oceanographic surveys in 2007–2019, we analyze the accuracy and efficiency of satellite altimetry in reproducing, first, the outer boundary of the plume and, second, the internal structure of the plume. We reveal that the value of positive level anomaly within the Ob–Yenisei plume strongly depends on the vertical plume structure and is prone to significant synoptic and seasonal variability due to wind forcing and mixing of the plume with subjacent sea. As a result, despite generally high statistical correlation between the ADT and surface salinity, straightforward usage of ADT for detection of the river plume is incorrect and produces misleading results. Satellite altimetry could provide correct information about spatial extents and shape of the Ob–Yenisei plume only if it is validated by synchronous in situ measurements

    Riverine Litter Flux to the Northeastern Part of the Black Sea

    No full text
    Rivers are among the main sources of marine litter, especially for semi-isolated sea areas with high populations and intense economic activity. The semi-isolated Black Sea located in the Eastern Europe is an example of such an area, whose watershed basin is under high anthropogenic pressure. In this study, we report the results of the first long-term monitoring program of floating litter at several rivers inflowing to the northeastern part of the Black Sea. We describe the main characteristics of registered marine litter, including the distribution of its type and size. Based on the obtained results, we reveal the relation between river discharge rate and the litter flux for the considered rivers. Using this relation extended to all rivers of the study area, we assess the total annual flux of riverine litter to the northeastern part of the Black Sea

    Mesoscale Eddies in the Black Sea and Their Impact on River Plumes: Numerical Modeling and Satellite Observations

    No full text
    The Northeast Caucasian Current (NCC) is the northeastern part of the cyclonic Rim Current (RC) in the Black Sea. As it sometimes approaches the narrow shelf very closely, topographically generated cyclonic eddies (TGEs) can be triggered. These eddies contribute to intense, along- and cross-shelf transport of trapped water with enhanced self-cleaning effects of the coastal zone. Despite intense studies of eddy dynamics in the Black Sea, the mechanisms of the generation of such coastal eddies, their unpredictability, and their capacity to capture and transport impurities are still poorly understood. We applied a 3-D low-dissipation model DieCAST/Die2BS coupled with a Lagrangian particle transport model supported by analysis of optical satellite images to study generation and evolution of TGEs and their effect on river plumes unevenly distributed along the northeastern Caucasian coast. Using the Furrier and wavelet analyses of kinetic energy time series, it was revealed that the occurrence of mesoscale TGEs ranges from 10 up to 50 days. We focused on one particular isolated anticyclonic TGE that emerged in late fall as a result of instability of the RC impinging on the abrupt submarine area adjoining the Pitsunda and Iskuria capes. Being shed, the eddy with a 30-km radius traveled along the coast as a coherent structure during ~1.5 months at a velocity of ~3 km/day and vertical vorticity normalized by the Coriolis parameter ~(0.1 ÷ 1.2). This eddy captured water from river plumes localized along the coast and then ejected it to the open sea, providing an intense cross-shelf transport of riverine matter
    corecore