162 research outputs found

    Non-equilibrium coherence dynamics of a soft boson lattice

    Full text link
    We study the non-equilibrium evolution of the phase coherence of a Bose-Einstein condensate (BEC) in a one dimensional optical lattice, as the lattice is suddenly quenched from an insulating to a superfluid state. We observe slowly damped phase coherence oscillations in the regime of large filling factor (~100 bosons per site) at a frequency proportional to the generalized Josephson frequency. The truncated Wigner approximation (TWA) predicts the frequency of the observed oscillations.Comment: 10 pages. 4 figure

    Transport behaviour of a Bose Einstein condensate in a bichromatic optical lattice

    Get PDF
    The Bloch and dipole oscillations of a Bose Einstein condensate (BEC) in an optical superlattice is investigated. We show that the effective mass increases in an optical superlattice, which leads to localization of the BEC, in accordance with recent experimental observations [16]. In addition, we find that the secondary optical lattice is a useful additional tool to manipulate the dynamics of the atoms.Comment: Modified manuscrip

    Superfluid current disruption in a chain of weakly coupled Bose-Einstein Condensates

    Full text link
    We report the experimental observation of the disruption of the superfluid atomic current flowing through an array of weakly linked Bose-Einstein condensates. The condensates are trapped in an optical lattice superimposed on a harmonic magnetic potential. The dynamical response of the system to a change of the magnetic potential minimum along the optical lattice axis goes from a coherent oscillation (superfluid regime) to a localization of the condensates in the harmonic trap ("classical" insulator regime). The localization occurs when the initial displacement is larger than a critical value or, equivalently, when the velocity of the wavepacket's center of mass is larger than a critical velocity dependent on the tunnelling rate between adjacent sites.Comment: 8 pages, 4 figure

    Mott insulators in an optical lattice with high filling factors

    Full text link
    We discuss the superfluid to Mott insulator transition of an atomic Bose gas in an optical lattice with high filling factors. We show that also in this multi-band situation, the long-wavelength physics is described by a single-band Bose-Hubbard model. We determine the many-body renormalization of the tunneling and interaction parameters in the effective Bose-Hubbard Hamiltonian, and consider the resulting model at nonzero temperatures. We show that in particular for a one or two-dimensional optical lattice, the Mott insulator phase is more difficult to realize than anticipated previously.Comment: 5 pages, 3 figures, title changed, major restructuring, resubmitted to PR

    Thermodynamics of quantum degenerate gases in optical lattices

    Full text link
    The entropy-temperature curves are calculated for non-interacting Bose and Fermi gases in a 3D optical lattice. These curves facilitate understanding of how adiabatic changes in the lattice depth affect the temperature, and we demonstrate regimes where the atomic sample can be significantly heated or cooled by the loading process. We assess the effects of interactions on a Bose gas in a deep optical lattice, and show that interactions ultimately limit the extent of cooling that can occur during lattice loading.Comment: 6 pages, 4 figures. Submitted to proceedings of Laser Physics 2006 Worksho

    Detecting Super-Counter-Fluidity by Ramsey Spectroscopy

    Get PDF
    Spatially selective Ramsey spectroscopy is suggested as a method for detecting the super-counter-fluidity of two-component atomic mixture in optical lattice.Comment: 3pages, no figures, replaced with revised version accepted by PRA. Discussion of the Ramsey pattern specific for topological excitations is adde

    Plasma Oscillations and Expansion of an Ultracold Neutral Plasma

    Get PDF
    We report the observation of plasma oscillations in an ultracold neutral plasma. With this collective mode we probe the electron density distribution and study the expansion of the plasma as a function of time. For classical plasma conditions, i.e. weak Coulomb coupling, the expansion is dominated by the pressure of the electron gas and is described by a hydrodynamic model. Discrepancies between the model and observations at low temperature and high density may be due to strong coupling of the electrons.Comment: 4 pages, 4 figures. Accepted Phys. Rev. Let

    Macroscopic dynamics of a trapped Bose-Einstein condensate in the presence of 1D and 2D optical lattices

    Full text link
    The hydrodynamic equations of superfluids for a weakly interacting Bose gas are generalized to include the effects of periodic optical potentials produced by stationary laser beams. The new equations are characterized by a renormalized interaction coupling constant and by an effective mass accounting for the inertia of the system along the laser direction. For large laser intensities the effective mass is directly related to the tunneling rate between two consecutive wells. The predictions for the frequencies of the collective modes of a condensate confined by a magnetic harmonic trap are discussed for both 1D and 2D optical lattices and compared with recent experimental data.Comment: 4 pages, 2 postscript figure
    • …
    corecore